Reprinted from
Symposium on
Machine Processing of

Remotely Sensed Data

June 3 - 5,1975

The Laboratory for Applications of
Remote Sensing

Purdue University
West Lafayette
Indiana

IEEE Catalog No.
75CH1009-0 -C

Copyright © 1975 IEEE
The Institute of Electrical and Electronics Engineers, Inc.

Copyright © 2004 IEEE. This material is provided with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of any of the
products or services of the Purdue Research Foundation/University. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.



RECURSIVE ESTIMATION
OF PROPORTIONS 1IN
EARTH OBSERVATICNS

Demetrios Kazakos

Rice University, Houston, Texas

ABSTRACT

in Earth observations problems, we
usually have the situation of knowing accu-
rately the probability density functions of the
several classes of interest, and we need to
classify a set of observationg with unknown
class proportions.

The observations are in n-dimensional
space, where n is the number of spectral
bands,

Two recursive algorithms for classify-
ing the observations and estimating the prior
probabilities are described. The first one
achieves simultaneous classification of pixels
and estimation of prior probabilities (or pro-
portions) and the second one estimates the
proportions in a recursive fashion,

There is a similarity of the second
approach toc maximum likelihood estimation,
but the proposed method requires less com-
puter time,

SUMMARY
FIRST METHOD

A, Two (Class Case

We assume that each observation
X.eED comes from one of two hypotheses,

H{, H, withp.d.f's £ (X) , £,(X)

1 ¥
We assume also that the prior probabi-
lity m of I—I1 is unknown,

Let Pn be the nth estimate of T
Let

1 if fl(xk+1) N 1- Pk
K+l = B X1 By

0 otherwise
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Extending the adaptive algorithm of
Davisson and Schwartz [l2]for simultaneous
detection of the Xj observations and éestima-
tion of w , we corstruct the following recur-
sive estimation-detection scheme: !

-1
P = Pn - (n+l)
[Pn - Wn+1]

i.e., at each step, we use the current esti-
mate P for classification of X ., and

determination of W n+l -

n+l

It turns out that the above algorithm is
simple but the estimate is biased, The con-
tribution of the present work is the modifica-
tion of the algorithm, so that

(2) The estimate P , becomes
unbiased.

(b) Convergence in the mean
square sense is optimally
accelerated.

This imgrovement is achieved by the
introduction of two nonlinear transformations,
L(P) and g{(P), defined for P E (0,1).

The new algorithm is:

P = P - (n+1)71 . L(P)

n+1

) [g(Pn) ) Wn+1:|

Using Stochastic Approximation theory,
the funcrion g 1is chosen so that the estimate
is unbiased. The choice that achieves this,
is:

g(s) = J'[sfl(X) + (1-s)f2(X)] dx

R(s)
where

R(s) = -[XeE“ ; st (X) =
> (1-8) £, (X)}

for se(0,1)

There is also an optimal choice for
L(P) , in the sense that the asymptotic error
variance is minimized,

The optimmal choice is:

L(s) = [G(s)]'l

for sefe,l-e]




where
€ = small pos. number

G(s) = [ 1,00 - 1,(x)}dx

R(s)
Usipng Sacks Stochastic Agproximation
theorem [8], convergence to the true para-
meter m is ensured,

The asymptotic error variance is:

Lim nEB(P, - ™2 = [c(m ]2

N

g(m) (1-g(m))

B, m s 2 C(lass Case

Let H,,...,H be the m hypoth-
eses, with kidown probalgility density functicns

£(X), 00, f(X), XeET

1}

Let m = vector of prior probabilities

T (Tyaeees, ™)

The extension of the original Davisson-
Schwartz algorithm, is:

_ _ -1
P .41 = Py (n+1)
[Pl -wl o, pm b
n n+l n
Wm-l
B n+1
where
1 m-1
Po= (P, WP, )

and Pﬁ is the nth estimate of T -

The quantities Wk are defined as

follows ; n+l
. k
1 if Pn fk(Xn+1)
wk = = max P1 f.(X_..)
n+l © jooon 7T+l

0 otherwise
They involve the "updating factors™ in
computing Pn 41 from P
Again, the algorithm is biased,

The improvement proposed is nontrivial
extension of the m = 2 case.

24-41

We define the regions:
_ n . =
Ry (m) = {XeE ;e T (X) =
= msax T fS(X)}
for k=1,...,m
Then, we define the functions:
g ¢ (0,1 4 (0,1) ,

k=1,...,m=-1

m
gi(r) = Y g | F(X) ax
s=1

R ()
for k=1,...m-1
Also, we define an (m-1) x (m-1)
martrix,
L(m) = {Lij(ﬁ)},
i,j=1,...,m-1
L. j(-n') are functions, defined on
(o, ™
Ll](w) (Oyl)m had (OsL‘O)

Then, the proposed algorithm has the
form:

p =P - (n+1)"} . A

n+1l n
L(m - [ g (P)

1

n+l*- "

m-1

W1'1+1

w 8- (Py)

The functions

™) make the algo-
rithm unbiased. gy (™) 24

_Furthermore, there is a choice of the
matrix L(m) that will guarantee fast con-
vergence, according to Stochastic Approxima-
tion theory of Sacks [8].

The choice of Lij('rr) that will do i,

TS
R_(m)
.., m-1

is:

Lgy(m f (X ]ax

s, k=1,.



A is a scalar constant, the adjust-
ment of which will further improve conver-
gence.

The formula for the asymptotic error
convariance matrix

Q(m) = lim n E(P - .
(Pn - om

is given in Ref. [4] .

The algorithm is currently being
applied to Earth observations data.

SECOND METHOD

Another way of estimating the prior
probabilities is by the method of mixtures.

A. Two Calss Case
We construct the mixture density

g(X | ™) = mf (X) + (1-m)E,(X),

, XeER

The maximum likelihood estimate of

w 1is the argument that maximizes
N
z log g(Xk l ™)
k=1

It is shown in [11] that the maximum
likelihood estimate is asymptotically efficient
for "nice" density functions,

However, it is in many cases difficult
to computé because it involves the maximiza-
tion of 2 Nth degree polynomial,

Instead, a recursive algorithm is
proposed,
Let P_ be the nth estimate of w,
Then the algorithm is:
- - ~1, .
Py = P, (n+1) L(Pn)
) Xpgp) - 1 (Xyiy)

P, fl(xn-i-l) + (1-Pn)f2(X

n+1)

where L (P_) is an adjustable weight
function, defined on P_e(0,1) .

Using Sacks Stochastic Approximaticn
theory, it i shown in Tll] that % converges
in mean square to w , (the true Mvalue).

Furthermore, there is a choice for
L(m) that will optimize the speed of
convergence,
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The optimal L=L,(m) is:
Lo(m = [1m] ™
where
I = [l - f2<x)]2 S

En
g (x| m dx

For the above choice, the estimate Pl_1
asymptotically efficient, i.e.

-1
lim n E(P, - m2 = [](w)]
Rao-Cramér lower bound.

B. m > 2 Class Case
We have to estimate the vector para-

meter ™ =(1'rl,...,'le_1)-
1 m-1 _
Let Pnz(Pn""’Pn ) =
nth estimate of .
Let
m-1
g(x| m =} T f (X) +
k=1
m-1
+ (1 - Z -rrk)fm(X)
k=1
The algorithm now is:
_ _ -1
Pn+1 - Pn (n+1)
g-1(Xn+1 iPn)

1:rn(Xn+l)" e

e X p)

B fm(xn-_l-l):]

The details of the convergence proper-
‘t[i?lS]Of the above algorithm can be found in

A(Pn) is a function:

APy : (0,1)™" ! L (0,4,)




The adjustment of which accelerates
¥ convergence of the algorithm,

The above algorithm is similar in
character to the maximum likelihood estimate

Of .,

i It can be described as a recursive
© yersion of the MLE ,

The updating of P is done by
moving along the gradien% of log g(XI,l+1 | ).

The proposed algorithm is currently
being tested in comparison to the maximum
likelihood one, using simulated and then
ERTS data,
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