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A GENERAL NON-PARAMETRIC CLASSIFIER APPLIED TO DISCRIMINATING

SURFACE WATER FROM TERRAIN SHADOWS*

W.. G. Eppler

Lockheed Electronics Company
Aerospace Systems Division
Houston, Texas

I. ABSTRACT

A general ncn-parametric classifier 1s described in
the context of discriminating surface water from terrain
shadows. In addition fo using non-parametric statlstics,
this classifier permits the use of a cost matrix to
assign different penalties to various types of misclas-
sifications. The approach aiso differs from conventlonal
classifiers in that 1t applies -the maximum-likelihood
eriterion tc overall class probabilities as opposed to
the standard practlce of choosing the meost likely indi-
vidual subclass. The classifier performance 1s evaluated
using twe different effectiveness measures for a specific
set of ERTS data.

IT. INTRODUCTION

An applicaticn which has attracted widespread interest (Cartmill, 1974 and Moore,
1973) is that of using ERTS multispectral scanner data tc detect surface water. One
such system (Anderson, 1973) which has been used with considerable success 1s based on
the fact that values observed in Multispectral Scanner Channels 1 and 4 cluster in dif-
ferent regions of measurement space as shown in Fig. 1, It was found that water could
be separated from other confusion classes (e.g., wet fields) by using the Spectral Dis-
eriminant Line shown in Fig. 1. In order for a pixel to be classified as water the
value for Channel % has to be in the range 0 te 12 inclusive and the value in Channel 1
must equal or exceed the value shown. Results of extensive study (Moore, 1973} indi-
cated that this approach can achieve high detection rate (i.e., greater than 90%) with
low false-alarm rate (i.e., less than 10%) in cases where there is nc silgnificant ter-
rain relief and/or where the sun elevation angle is high.

More recent experlence indicates that the false-alarm rate exceeds all reasonable
bounds when the nominal spectral discriminant line (shown in Fig. 1) 1s used with ERTS
data acquired at low sun elevation angles in areas with signifieant ground rellef. The .
particularly troublesome scene used for this paper is ERTS 1161-153681 acquired with a
sun elevatlon angle of 29 degrees on January 30, 1973, in an area of the Great Smoky
Mountains near Ashevllle, North Carclina. Figure 1, based on data to be described in
Section III, shows that measurements from terrain shadows cluster near the orilgin; i.e.,
there 1s very little return in either Channel 1 or 4. Unfortunately, the nominal
spectral discriminant line passes through the cluster with the result that many of the
terrain shadow plxels (specifically, those on and above the line) are misclassified as
water. This paper describes a procedure for modifying (specifically, ralsing) the
nominal Spectral Discriminant Line in order to reduce the number of terrain shadow
pixels misclassified as water without significantly reducing the detectionm rate for
water pixels. No consideration is given to discrimination between water and any other
confuslion class.

¥This research was funded by NASA at the Johnson Space Center under Contract NAS-22200.
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From an applications point-of-view the result of thils research is a number of
Spectral Discriminant Lines which optimize system performance for this particular data
set under g variety of different conditions. More importantly, however, this paper
describes the stralghtforward use of statistical decision theory in an easily-understood
{(i.e., two-dimensional measurement space) application. Features and/or results pre-
gsented in this paper which are not avallable in most computer-based classification
systems include:

1. The use of a non-parametric representatlon of the class statistics.

2. The use of a cost matrix to assign different penaltles to various kinds of
misclassifications.

3. The maximum-likelihood criterion is applied to overall class probabilities (computed
as the welghted sum of subclass probabilities} as opposed to the standard practice
of choosing the most 1ikely individual subclass.

'

4. The probability density functions are used to‘derive two different measures of classi-
fication accuracy:

a) The probability of misclassifying water as "other" and vice versa.

b) The classification efflciency defined in Sectlon V.

IiI., DEVELOPING THE TRAINING STATISTICS

The probabllity density functions for water and terrain shadows were developed from
a total of ten locations in ERTS 1191-15381 (near Asheville, North Caroclina),
ERTS 1092-16305 (in Washington County, Texas), and ERTS 1073-16244 (in Harrls County,
Texas). Ground truth for the Texas scenes were primarily in the form of aerial photo-
graphs but for the North Carolina scene only topographic maps were used. The tralning
samples were those pixels classified as water by the original Spectral Discriminant Line
shown in Fig. 1, This somewhat unconventlcnal approach 1s necessary because terrain
shadow plxels are distributed quite randomly throughout an area and therefore are not
easily defined by locaticn (i.e., the conventional training field method). The approach
is valid because: .

1) FPrevious studies (Moore, 1973) showed it admits almost all of the water samples.

2) By definiticn, i1t admits all of the terrain shadows whieh can be mistaken for
water.#

The resulting training samples for each of the ten subclasses were processed to
produce the following statistical representations:

1) Two-dimensional and one-dimensional nonparametric probability density functions.

2) Mean vectors, covariance matrices, standard deviations, and correlaticn
coefficlents.

3) Two-dimensional and one~dimensional probability density functions computed
assuming the data is Normal with parameters obtained in step 2.

The means, standard devlatlons, and correlation coefficients for each of the ten sub-
classes are glven in Table 1. This table supports the following observations:

1} The mean value in Channel 1 1s always less for.terrain shadows than for water.
This suggests that the Spectral Discriminant Line in Fig. 1 should be raised 1in
order to reduce confusion between these two c¢lasses.

2) - The mean value in Channel 4 is sometimes lower and sometimes higher for terrain
shadows than for water. This indicates that classification based on Channel 4
alone will confuse water and terrain shadows.

*Because of the way the training samples were selected, the a priori probabllity of
terrain shadows 1s inferpreted to mean "the a priori probability of that subset of ter-
rain shadows misclassified as water by the original Spectral Discriminant Line."
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Figure 2 shows the Nonparametric and Normal representations for a particular area of
terrain shadows. From this figure it can be seen that:

1) Both distributions occupy very hearly the same portion of measurement space.

2) The Nonparametric and the Normal density functlons have approximately the same
shapes. ' !

3) The magnitudes are approximately comparable; the Normal representatlon is gen-
erally smoother, having smaller peak values with no holes or multiple modes.

IV. PARTITIONING THE OBSERVATION SPACE

In a general sense the object of the computer-based classification system is "to
separate water pilxels from cther kinds of pixels." To accomplish this it is reasonable
tc classify as water those pixels where the likelihood of water is greater than any cother
confusion class (e.g., terrain shadows). Statistical Decision Theory {Anderson, 1558)
takes thils into account through the use of conditicnal probabllity density functions
estimated on the basls of tralning samples; Fig. 2 15 a typical example.

In actual practice it is usually impossible to completely separate water from the
confuslon classes and it is necessary tc make certaln compromises. For example, it may
not be appropriate to gilve the same conslderation to classes which cccur only very rarely
as to classes which comprise the majority of plxels. In this case the objective might be
"to minimize the number of pixels which are misciassified.”™ Statistical Declsion Theory
incorporates this consideration through the use of g priori probabilities.

Another factor which the user should take into account is that all errors do not
have the same consequence. For example, one might prefer tc allow a number of false
alarms rather than to miss small bodies of surface water. Statistlcal Declsion Theory
permits the user to specify¥® the relative importance of various types of misclassifica-
tions by use of a payoff matrix. In this case the objective 1s "to maximize the expected
benefit (i.e., payofl) over the entire data set.”

All computer-based classiflcation systems cperate by partitioning the observation
space into non-overlapplng regions assoclated with each known c¢lass. Thls partitioning
is accomplished by an algorithm which specifies the desired classification for each
point 1in cbservation space (i.e., every combination of measurements). Four different
algorithms were considered in this investigation:

1) The Two-Dimensiohal Table (Eppler, 1974} which maximizes the expected benefit,

2) The Spectral Discriminant Line {Anderson, 1973) which maximizes the expected
benefit.

3) The Thresheld Value in Channel 4 which maximizes the expected benefit.

4y The conventional LARS clasgification (Fu, 1969) which selects the Most-Likely
Subclass.

The first three classifiers operate tc maximlze the expected benefit defined by
Eg. (1).*t

N
B = P B 1
B Igifn(Pnanl + PnEBn2) (1)

¥An inability by the user to specify the relative consequerices 6f the two types of
misclassification implies that he does not care which type ¢f error 1s made.

TSymbols used in this paper are defined in the Glossary of Symbols in Section VII.
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Equation {2} follows from the fact that, for the purpose of thils paper, a pixel is
considered to be either water or - -terraln shadow.

B .=(1-F_) (2)

n2 nl
It is helpful to define a differential benefit according to Eq. (3); the value of Dn is
positive for water subclasses and negative for terrain shadows. /
Dp = (Byy - Bpp) ) (3)

Equation (4) follows from defining Rl(X) as that reglon 1n observation space which the
classification algorithm assqciates with Class 1.

B, ;f p (X)ax ' Wy ]
R (X) '

Equation (5) 1s a definition of the local differential benefit.
N
B(X) =n}'=_‘,anPnpn(x) . - (5)

By cogbining Egs. (1)-(5) it is possible tc express the expected benefit according to
Eq. (6). . . o

. N
B = nganan + R_/(’X)B(X)dx (6)
1
From Eq. (6) it is apparent that the expected benefit 1s maximized simply by partiltioning
the observation space in such a way that X 1s included in region R, wherever B(X) > 0.
Points in observation space where B(X) < 0 are assigned to regilon R2 and points where
B(X) = 0 are regarded as a threshold c¢lass.

It is apparent from Eq. (5) that the local differential benefit depends on the
a) conditlonal probability density functions, b) a priori probabillitles, and c) the
payoff matrix for each subclass; these are the three key elements in Statlistical Declsion
Theory. Figure 3a shows B(X) for a typical case; the subclasses are defined in Table 1.
In this case the g priori probabilities are 0.04, 0.08, and 0.16 that a given pixel 1is
from an area of small ponds, large lakes, and terrain shadows, respectively. The benefit
of classifylng a plxel as water when it 1s actually a small pend, a large lake, and a
terraln shadow Is +100, +30, and ~10, respectively.

Using the decision rule given by Eg. (7) results in the observation space

B(X) > 0 X + Ry = Water (7a)
B(X) = 0 X + Ry = Threshold (78)
B(X) < 0 X » R, = Terrain Shadow (7e)

partition shown in Fig. 3b. The first type of classification algorithm investigated
stores the partitiocon in core memory as a Two-Dimensicnal Table where the desired classi-
fication can be looked up for any (xl, x“) combination. The second classiflcation

algorithm investigated stores only the Spectral Discriminant Line. A pixel 1s classified
as water 1f 0 < x; < 12 and if x) is above a line such as the one shown 1in Figs. 3a and

3b. This rule can result in suboptimal performance; for example, note the two circled
entrlies in Figs. 3a and 3b.

The third algorithm Investigated classifies a pixel as water if Xy 1s less than a
prescribed Channel 4 Threshold. This simple classifier has been used with considerable
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where B(xu) is given by Eq. (9).

success 1In scenes where the ground relief is not signlflcant and where the sun elevation
angle 1s high. TFor a partition based on x, alone, the region R, 1n Eq. (6) 1s a

vertical line in the (xl, xq}—plane. In this case Eq. (6) can be reduced to Eq. (8)

I
= 8
B = n};“,lpnana + f B(x,)dx, . (83
Rl(xﬂ)
43
B(xn) = 2; B(x,,%y) (9)
xl—9

From Egq. {8) 1t is apparent that the expected benefit is maximized simply by including

in region Rl only those values Xy for which B(xu} is positive. The upper limit on

Xy is dictated by other confusion classes (e.g., wet fields} not considered 1n this
study.

The first three algorithms all make use of pn(X), the conditional probability density

functilons. In all cases consldered, both the Normal representation and the Nonparametric
representaticn were invegtigated. 1In one case B({X)} was smocthed using a two-dimensional
filter according to Eq. (10) prior to applying Eq. (7).

. +1 +1
Blx,,x,) = X 2, H(L,3)B[(x, - 1},(x, - J)] (10)
1%y = & 1 y

This smoothing reduces the magnitude of peak values and extends the radius of non-zero
values of B . This has the effect of generalizing and extrapolating the tralning data.
These functlons are particularly important when only a few training samples are avallable
or when this technique 1s extended to more than two dimenslons.

The fourth classifier investigated was the well-known LARS algorithm which assigns
to a pixel the designation of the Most-Likely Subclass. This apprecach assumes the proba-
bility density functions are Normal with parameters computed from ftraining samples. One
variation from the conventicnal LARS appreach was to use the product DnPn in place of the

usual a priori probabilities Pn . The resulting partitiocn and Spectral Discriminant Line

in a typlcal case are shown in Fig. 4.

V. EVALUATING CLASSIFIER PERFCORMANCE

This sectlon deseribes two different measures used for evaluating the performance of
the variocus classifiers discussed in Section IV. These performance measures are a) Clas-
sification Efficiency, and b) Probabllity of Misclassification.

From Eq. (1) it is apparent that the expected benefit ranges between Eﬁin and B__.
given by Egs. (11) and (12) in which the notation nel denotes

E = E:P B + E P B (11}
min ey @ ne nea D nl

B = »»PB .+ 3 PB )

max = & 'n nl = & n"n2 (122

water subclasses for which Dn > 0 and ne2 denotes terrain shadow subclasses for which
Dn < 0. The value Bmin g
incorrect class with probability 1.0, and Bmax corresponds to the case in which pixels
gre asslgned to the correct class with probability 1.0.

corresponds to the case in which pixels are assigned te the
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Note that B min and Bmax depend only on a priori probabilitilies and user-defined

differential benefits; they do not depend on how effectively the observatlon space 1s
partitioned by the classification algorithm. As a measure of the classifier performance
it is useful to define a measure called Classification Efficiency defined by Eq. (13).

o
!
o

E = = min . ro(13

From Eq. {13) it 1s apparent that 0<E<1,0. By combining Egs. (&), {11), (12), and (13)
the Classification Efficiency can be expressed by Eg. (14) to show a

B(X)dX - P D
Rl XL/. é%é

(14

EanDn - nze:anDn

dependence on the partition Rl .¥ It 1s clear from Eg. (14) that the Classificatlon

Efficienty 1s maximized by including X 1n Rl only if B(X) > 0 ; this 1s the criteric
used throughout Sectlon IV.

The second measure of performance used 1n thils investigation 1s the standard Proba-
billity of Misclassification. Equation {15) gives the probability that water will be mis-
classified as terrain shadows and Eg. (16) gives the probability that terrain shadows wil
be misclasslified as water.

Pyy = P nzg:lP P, (X)dx (15)
ne
R, (X)
Py, = PIRA (X)ax. ‘ (16)
P nee
ne
R (X)

Flgures 5a and 5b show the integrand in Egs. (15} and (16) for a typlcal case. In
Fig. (5a) the reglon of integration RE(X) 1s below the Spectral Discriminant Line. In

Flg. (5b) the region of integration Rl(x) is above the Spectral Diseriminant Line.

VI. RESULTS AND CONCLUSIONS

The major gquantitative results of this 1investigation are contained in Tables 2 and 3.
The Cases 1-9 consist of three groups, each having different combinations of. a priori
probabllities and user-specified differential benefits. In Group 1, consisting of
Cases 1-3, the a priori probabilities and the magnhitude of differential beneflts are the’
same for all subclasses. In Group 2, consisting of Cases 4-6, the magnitude of differen-
tial benefilts are the same for all subclasses but the « prtorz probabllities for terrain.
shadows and water are 0.64 and 0.36, respectively. In Group 3, consisting of Cases 7-9, !
the a priori probabllitles are the same as for Group 2 but the magnitude of differential ;
benefits vary with subelass to put the emphasis on detecting small pends at the cost
increased terraln shadow false alarms. Within each group three different classification
algorithms were used to partition the observation space. Case 10 1s the same as Case 1
except that smoothing is applied to B{(X). The original Spectral Discriminant Line,
designated Case 0, 1s included for the purpose of compariscn.

¥It is clear from Eq. {14) and the definition of B{X) 1in Eq. {(5) that E also
depends on the inherent separability of the classes.
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The observaticon-space partition determined by the classifier 1s speclfied in the
form of a) an irregularly-shaped {(usually) multiply-connected area such as Filg. 3b,
b} a spectral discriminant line, and c) a threshold value for Channel Y4, Exceptions are
Cases 0, 3, 6, and 9 for which no Channel 4 threshold value is given. Not counting the
original speetral discriminant line, a total of 27 different classifiers are derived.
Three different performance measures given by Eqs. (14)-(16) are ccmputed for each of
the classifiers and given in Table 3.

Infermation presented in Tables 2 and 3 supports the following concluslons:

(1) In crder to avoid misclassifying terrain shadows as water 1t is
necessary to ralse the original Spectral Discriminant Line in the

range 0 < xy £ 3.

This modification reduces the detectlion rate toc at most 6.7% for the
types of water found in the three scenes investigated in thls study.

(2) All of the two-dimenslonal classifiers yleld satisfactory results
(i.e., P12 < 0.1 and le < 0.1).

{(3) Classification based cn a threshold value in Channel Y4 alone does
not yleld satisfactory performance in the case of scenes having a
low sun elevatlon angle and significant terrain relief.

(4) The classification system based on maximum benefit ylelds only
slightly better performance than the LARS approcach which
asslgns samples to the overall class of the most likely subclass.*

(5) _The use of the Nonparametric denslty function ylelds only slightly
better classification results than the conventicnal approach uslng
the assumed Normal density functilon.#

{6} The classification system based on the full two-dimensional table
yields only siightly better performance than the simplirfied
appreoach using the Spectral Discriminant Line,

It should be emphasized that these specific conclusions are based on the particular data
sets used in the analysis and different conclusicns may apply for other data. The
method of analysis, however, is applicable in all cases and yields the best discriminant
region, together with measures of 1ts effectiveness in the glven application.

VII. GLOSSARY CF SYMBOLS

Symbol Meaning

E Expected benefist.

N Number of subclasses.

Pn A priori probability of Subclass n.

Eni Probability of assigning Subclass n to Class 1 for
fin<Nandi-= % ?g; ¥Z§§§in Shadows

Bni Benefit obtained bylaggigﬁiggrSubclass n to Class 1 for
lsngNandl = 2 for Terrain Shadows

Dn Differential benefit defined by Eq. (3). The value is positive for water sub-
classes and negative for terrain shadows.

pn(X) - Conditicnal probability density function for Subclass n.

X Observationrvector {xl,xu) composed of measured values in Channels 1 and 4.

¥Tt should be emphasized that Concluslcns Y4 and 5 probably would nct be true 1f the
various subclasses were combined into the two major categories prior to classification.
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Symbol ' : Meaning

Rl(X) Region in observatlon space assoclated with Class 1.

B(X)
B(x)
H(i,3) Two-dimenslonal filter used to smooth E(X) according to Eq. (10).

o

12
Por

Local differential benefit defined by Egs. (5) and (9).
Local differential benefit after smoothing accordlng to Eq. (10).

!

Classification Effiecienty defined by Eq. (13); it is a measure of classifier
effectiveness (and class separability). 0 < E < 1.0.

Probability that a water pixel will be misclassified as terrain shadow.

Probability that a terraln shadow plxel will be misclassified as water.
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Fig. 1:
Scanner Channels 1 and 4.

Water Detection Based on ERTS Multispectral

Table 1 - Gecgraphlcal and Statistical Description of Tralning Filelds for

Each Subelass

Subclass!ﬁ Description Scene Lines Samples | Plxels My L_EEL L5 ay, p
1 Terrain Shadows 1181-15381 | 151-200 l4o01-450 { 243 15.824 | 1.884 11.509 {0.532 | 0.782
2 Terrain Shadows 1151-15381 | 201-250 }551-600 | 183 14.685 | 1.194 [2.334 [1.013 | ©.825
3 Terrain Shadows 1191-15381 | 871-920 [151-200 | 104 12.852 | 0.778 [0.808 [0.518 | 0,367
4 Large Reservoir 1191-15361 [1351-1400 {701-750 | 612 22.259 11.082 }1.569 |1.075 1 -0,384
5 Small Ponds 1191-15381 [1801-1850 [271-320 65 20.519 | 2.488 | 2.815 [0.773 |-0.257
6 Terrain Shadows 1191-15381 51-100 101-150 229 16.680 (2.221 [1.556 | 0.842 0.726
7 Sommerville 1092-16305 | 900-925 |201-225 | 649 19.890 | 0.996 1.006 {0.577 | 0.097
Reservolr
8 Small turbid pond | 1092-16305 | 791-840 |426-U75 22 36.709 15.906 1 1.848 | 0.803 (-0.341
3 3mall pond 1092-16305 |1046-1095 {&01—u50 11 .20.452 ‘2.091 0.91% 10.900 | 0.170
|10 Lake Houston 1073-1624% |1511-1535 |221-245 | 428 ]37 $03 Ju.137 2.470 | 1.384 |-0.106

2B-31



2B-32

*T SsBTOoQNE J04 UOTjloung K£31sus(q £3TTTQRQOJId TBUOTITDPUO) JUTOL JO SUOTiIBjUasaaday TRWION pUy oTJdg4swededucN :z “3T4
TBULION sTa3aweaeduoN
o 0 a 0 0 [ o o 0 0
o 0 o [V o 0 0 o o a c ] o o 0 o 0 o o t
0 a o a a o ] o [ 0 0 0 o 0 o o 0 c 0 D
c 0 ] o £ zZt  ®R0Z thZh SZLZ lsh 0 o o o 4 z9 1262 hinE 0ZaZ 959
21 GNY U N33¥213d b NYHD HCJ ,eeD|X(p NYRI|Bpue Z1 ONY G N3I3N138 k NYHD 404 peeGIX{h NYHIJEQNY
0 o o 0 [ . )] 0 D o 0 -
c o 0 a o o o [ 1] a o 0 o 3 a ] [ [ 0 [}
e g 0 o a 0 o 9 55 [TY g 0 a. ¢ o 0 o e 28 £zt
s Skal 0E9Z @922 221 Sk 0s 8 o 0 . 50s 902 g5z €o0gz  slel  oge 28 [ [ [
Ch ONY & N3IIWLIG | NYHD MOJ 4enCiX() NYHI)EQY® Ch aNY & NFINL3E | NYMD WG peeDIX{] NYHI)EDNHM
. b VINKYHD KL 3GTyA k' 1INNYHD N1 3NTvA
zl [ g ¢ 1] 5 " € z 1 o 2t [ - T 8 ¢ $ s [ € z 1 0
o o o [ [ [ ] 0 4 0 o I 0 s 0 0 0 0 0 o o 0 ] o o [\ ] s
o 0 ] [} n [ 0 0 0 o " c o or 0 ] o 0 0 0 o [ 0 0 0 4 0 er
0 4 o g 1 ] C [ 0 o o ¢ [ N o 4 o ] 0 ] o a ] [+ a 4 [} i
0 ] ] o] 1] 1] 1] o |5} 0 ! gt e 21 o o o o a ] 4 4] i] i] a I Th 21
¢ 0 C 0 0 0 o o b 0 21 g2z otz i a o o a a v o 0 o o 0 98z 28 €l
1] 0 0 o i 0 0 a 0 z 002 £L8 L&V bi o a 0 0 0 [+ ] o 0 ] o 6901 9hZ i
a 0 o 0 0 o g o zs 9801 1071 &5  S1 ¢ 0 L C 0 O D 4afl 469 502 §7
0 0 o o 0 [ 0 0 " €26 s6L1 shh  § 91 o n T o 4 a 0 0 [ o Tgel €28z 9t
o o e 0 a 0 a 0 9t 858 046 &5 O Lt e o 0 o a ) o 0 o tenl gz1 o0 1 £l
a ] o [ 0 ] 0 1 st E9 ¢l 2 D gr 1 0 0 4 ] o 1] C g [ we9 Iy O 0 gt t
o o c 0 o a 0 » &1l Fst 61 @ o a1 a 0 0 0 e [ 0 a o €zt @ a 0 81
o 3] 3] n 4} o 0 9 13 T o Q e oz 1 6 o 4 o a 4 e o in fh a c a oz 1
e 0 c n o a 4 F h n [] o 0 12 3 a 4 t 0 0 [ o 0 th 0 0 [ 0 1z 3
o 0 a 0 [ o [ u 0 [ [ [ 6 zz N o 0 [+ o n D o [ 0 0 a o o LN
L] o [ a [ o c 0 0 0 o 0 o €z M Q [ [ [ 0 o o [ D o | 0 o £z N
0 ] ¢ 0 o ] a o o [i} o 0 I e ¥ 0 o 0 [y o 0 o o t 0 o 0 ] Rz Y
Q n o a o e ¢ ¢ o o a o n 5z M ¢ 0 Q 4] o c o a [} 0 [ [} o Gz H
0 i 1 0 ¢ o ] 0. @ n o ) o gz 3 0 o ¢ ] a c G o n o o C o 9z 3
0 n [ ] o o c o o o o o ] 1z o n G 0 e [+ ] o i o 0 0 ¢ 2
o a a 0 ] e ° o G 0 a o o az W ¢ o 9 o c C g a a a a C 0 #z N
[l n o 0 0 o a 0 D 0 0 o 0 2 1 0 a [ 1] 4 D u D o 2 o o 0 sz 1
0 0 o 0 0 0 0 o a 0 0 C a ae 0 o G a u o o 0 0 u o v g S¢
0 0 0 0 0 o ! o 0 B a o g e 2 e a o 0 0 0 o a o 6 a P o e 2
T n o 1} [1} [} 0 o o 0 a a [ ze n o n ¢ a o ] q a [ 4} a t 0 e N
¢ o 0 a a a c 0 u 0 o 0 g ce 1 c o o a o © 0 C 0 1] G o o tc I
o p 0 o 0 0 o c a o 0 6 o WE ¥ ¢ o a 0 a o e o 0 2 0 D [ aE ¥
o 0 g o 0 ¢ L] 4 o b o G )] g e D Q c D o g 0 i o o C 0 sp A
4 n 0 0 0 o o o I 0 t 0 o 9 0 n c L] ¢ 4 [ o o i o o [} (X3
a 0 0 o ] G ¢ ¢ 0 G o c 0 s e a 0 a ¢ c c i 0 0 [ c [ it
o n ¢ a ¢ 0 a 0 C o b c o BE e n e a G C o 0 0 a ¢ ¢ ¢ s
a 0 c 0 0 [ 4 [ u C a c 0 6t 0 0 c 4 0 c c 0 0 0 i c 0 6t
o ) o o 0 c c g o e o c 0 an o n ¢ o o c € o e o c u c Cy
G n C o U c ¢ g ¢ ¢ & © © Th g e @ 00 ¢ c o © g u c ot Th
" a c n o o 3 v a 0 ¢ ¢ o Zn ¢ 0 ¢ o o ¢ G C n a o ¢ C Zh
e p €© o ®& @ © @ O € L ¢ 0 & €& o ¢ @ © ¢ £ 0 €t 0 © © 0 9t
beallp(l KYMIVH MYHIIHQORe
KOTLINMd APIENEG ¥k ECH beaBix{T KYH3IY), NyHI)gO¥e
LT mva303 *yo3 2ge” = A0 "ClS B W) 8051 =*a3g "qd§ 1 M) G'Cni  m3lohys SINML NI ST3¥1d 340 N3IERCA 3Fhy
sgutl “Thasnly L9 8" abhX eeze e whix sXINE¥H FIN¥IByAOD
hEBE*!  SNY3IW B NVYND H294S] mav3IW § NyHD



*L ssB) J04 *l o asen Jdo4
uot31Tgaegd 9evdg UOTIBAISSQQ TRUOTSUSWTI-CMI, 95 *314 SUT] UCTSTO3( pur 1TJ9usg TETIUSJISIITI [EBOOT :BE "ST4

h TINNYHI NI 307%A

b I3INNYKDI NI 3ANTyA
21 1! at I o ¢ 7 5 » 3 z 1 4 zi 3 o1 ¢ '] l L] 5 u £ z 1 o
a ] ¢ 0 1] 1] a ] L] o o 0 0 & a o a s] )] o ¥ ] a a a g o 4
a o o a L] il o 0 o i o o o [ a 0 0 0 0 0 ] 0 [ a o g o at
1] 0 0 )] [ 0 o o o o 0 o z T 0 o [+ 0 o [\ [ ] o ] o o £S1= 1
4] o o [1] ] o 0 a s} o 0 z z z1 0 0 i 0 o] i L] 4] o n *} BOLE=CONI-2T
b o c 1] o o Q ] a o o H 4 Tl 0 a a o a [1] 1} 0 0 a a bifa=BEZh-tt
] o ] 0 0 ] ] L] o 1 a H z [ o o o 0 o o o o ] ] a SEL5=CThI™ M1
] 0 o 0 0 u o 0 0 C z z H 5t 0 o o 0 0 o ] ] [} b {00 ~w0@N=5hi= 51
o 0 e o a o g a o e 4 z ? 1 v 0 a o 0 0 0 0 o 0 (999 p882~50C~ 91
0 n a o 0 1] a 0 [4] H 2 2 et a o 0 o i] 1} a 0 1] sestat Z = &1
0 0 0 ] ] 0 Q 0 o z t 1 er t o a o 0 o 0 0 o o abT gbS1 &zh g1 1
o n 0 [] ] a [} 0 0 T 1 ] f 81 0 0 0 0 o o o o EZBS IC91 ach !
o a 0 L] 1] 0 0 ] 1 1 t t oz " o o g o i} o a a R0EE 9R4IZSAI2 02z 1
0 [*} o 0 [ o 0 0 ] 1 t T T iz 3 0 o a o 0 ] a q 4£%6 §ChZ 00¢ 27 3
o oG o a 6 o t ' ! ! t Iz N 0 a 0 0 0 a o [ ZiZ9 eSS 9hEZ ZZ K
a o o o o 0 0 mu 1 1 r 1 ! €2 N o o 0 a 0 o @it tez a19) 4Cen 4T06 gz W
o 0 g o ¢ o g H 1 1 1 I ! bz ¥ 0 0 ] 0 a o a 11-)0s9 zI9 1zIw gL0Z €xg Wz ¥
o o ¢ e ¢ o 0 o o ! ! ! ! Sz [ C 0 _0 [0 o gzzl zis ¢ 5§F Sz H
o o 0 o ] 4] [+ a 1] ] 1 t r 9z 2 0 o o 0 ] o [ a L] 4] ZI%y 05Y et gz 1
o o. o ¢} c o] 0. o 0 0 a 0 a- iz o 0 o o o 0 "} n o [] ] ] 0 Fi4
0 L] a 0 1] b)) 0 o [+} ] 0 o 0 8z N o 0 0 a [ a 1] 4] o i} n ] a 8z N
o n ¢ L] 0 o 0 0 0 Q a 0 o 6z 1 a o ] 0 D [} 0 0 0 o o 0 g az I
0 0 o ] [} 0 4 1] L] 0 q © i 0¢ 0 0 o Q 0 o [ 0 o 0 0 D 0 L1 )
o ¢ 0 0 a C o o o o 0 a o tc 3 o o ¢ o g c e a a o o ¢ 0 It 3 <
a 0 i [ 1 [ o 0 0 0 [} 0 ] ze N g 0 0 0 59 O 0 0 a 0 a 0 o e n 0
a 0 o 1] | 1 o 1 C ] [ ] ] e 1 0 n a o D11 9gyg D 55 D 0 g ] [ e 1 o™
0 0 o T r ] 1 1 o a [+ Q g hE ¥ 0 n a G1l  §gaZ 013 s§ O [} 0 [ ] he ¥
g o o ! 1 t t 1 t [ o ] ¢ se A 0 a [\ S OIT &9t 92ei T22 © 0 [ ] sg A
o i 0 1 ! T ! E ! T o a o vt i 0 o D10 291 &9t £841 hi9 GEt @ o o 111
u a T ' 1 ! ! ! ! __ w 0 u i« q 0 01f S% Q) 2055 904C b6OK 4@ @f1l O ] 9 it
1} o |- o Q a 1 i I o L (380 @ o 0 961s EhBG L1ZK £%Zh CZZ O 0 L1
o 0 @ T L] ] ! ! ' ¢ a e 0 L w m * £ 0 o h.:o mmmm Se4T “Z 0 [ [ 3
[} [} a 0 0 | o o 1 I 0 0 c Gh 0 ) 0 [ a [ a [1} w84 €05 O Q o O
0 1] o 1] L] o q o L} I 0 0 a 1h i} o 1] o] ] 1] 1} o £%1 ghh D [1) o s
a o q o a e 0 I 1 1 0 0 o T 0 0 0 o a ¢ oit 91 55 0 0 ] zh
o 1] o [+] 0 a ¥} o a [} *} o g Th [ 0 o o a 0 a0 o a o 5] a o tw
L143N38 ®AkpxykW Np 03S¥v8 NOFSTI3C heeO] ¥ LE43N38 03)234%3
3S¥D YNOISNIN Q=N
o
QUk*9- = 2 S5yI3 HOd LI4INIE hNWlyvW
OG2Z%A41 = 1 SEyY3 404 L143K38 ROwxyh

oegg nao* o1

N0t ohO* [

PAELE au0" [

'EY 1Y oot t

d-0l1- LR ]

Q*go: DhOD* g

g+t ogg* L]

Genle aefl:s ¢

genl- gl H

3:31- ool 1

LE43INTE vl w3n3zqalg ALITIGVYEOHD 120 jbdy §5¥13gns




CLASS

9

1y

2,277
Sedsid

4453
2,463
7.921
2,421
l.0]12
3eu17

«535

6.102

Kyy

+ 8469

1.026

1268
1,158
597
7u?
#3323
s 645
«810

1,818

Ky

1.09¢%
1959
+ 154
-sbt7
-.559
«751
057
-a507
+ 145

-+354

NyMBER OF CLASSES CONSIDERED®

rmzz>»Ix1Th e mCcr»»<

—

Fig.

CLASSIFICATION BASED

10
10
10
1o
10
10
10
[ ]
i0
10

iI0
10
10
10
10
ig

~—
o

10
10

10
10
10
10
10
10
10
10
10
10
10
i0
10

O NSNNNsrE L OO0 0D0OQOOO0C0O00O0O0R0 0O

= NNNUUNNNL

COWiWWw=NMNNN~NyN s S oD OO0 D

o

J e
CODOCO Wik=~ o UEoOOrepuvocoooCco O

N

e b e e e e = e
ooV oYUtV DOoOOo DO OoOooSCCQ

C

My

15.824
144685
12.852
22,259
204519
16,480
19890
3n.709
20.452
37,902

10

ON LARS CLASSIFIgR

10
10
10

—
o

'Mq

1-?84
lel?4

«778
1092
2488
2.221

996
5+906
2.091

44137

—

i 80
Y1t

« 160

s 240

400
160
.240
400
«H400

.2"”

9200

?+200

9.200
9,200
9.200
9,200
9.200

fe200

?.200

?.200

4

VALUE IN CHANNEL 4 .

cCcoOOoOOWununvnmdneaonNnUVGCOoOoOLO

—_——
OO0 ODOoODOoOOoOOoOROoODDCCDCOCOO0OFEDOEELDE

-
oCoODCCOOOO0OODDOOoODDoocDDODODEEDRRGE GE ®O

[}

DOoODOUUOoOOoOLOLDOCCDDODOoOC DO EERae OO C

7

coocCcocrLocoOCc O GCcCC oD OoOODODDOoOlcIEFROoOS OO OO

OD0DOo0O0DOoOUNUDCOOO0ODOoCCOoODODO0ODDOoDODO0OCODODODDODOODO O

~0

oOoCcCoO0oOOoCOCCOO0CDGCGODDODODODCDODOCOCIOCOOODO O

-
o

[
-

DODUDDDQDDC}DOC‘.DE‘DODU_D.DQQDDDDCDODDDO
EDCCCC‘ﬁCCCCC—DDdQcDDCQCCC SOCCDCCDCQID

-
N

4: Observation Space Partition Based on Most-Likely Subclass.
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Table 2:

of Condltions.

Summary of Spectral Partiticns Obtained for Various Combinatilons

Method Used for Clasalfication

Different Reprenentations of Partiticns as Described in Section 4

Statistical A ot sre 1 Value Which Channsl 1 Must E%ull or Exceed for Water cnv“u§ l;h':cht
atistica, rlori Differentia. When Cnannel 4 Eguala: anse. us
Case | Classirication Criterlon | pooreierracion | Probablzities Banefits Equal or Exceed
0 1 2 3 Ll 5 5 T [ 9 10 1l 12 for Water
0 | Original Speatral Line - - - 9 12 1% iT 20 23 26 29 32 M 37 4 43 -
1 Maximum Benafit Nonparametric Independent Endapendent 18 18 19 19 200 asi 26% 29% 32% 3% 3% q0% A3 2
of Subg¢leas |of Jubclaxa
2 | Maximum Benafit Normal Independent Indepandent 17 Y] 19 20 20 21 26% 29% 318 3ae 3T* jom 43¢ F
of Subclass |of Subkclass
3 | Mozt Likely Jubclaaa Normal Independent Independent 7% 18 19 20 20 23% 6% 298 320 ¥ 37T 4O*  43% -
of Subslass |of Subclaaa )
X | Maximum Benefit Norparametric Dependent on | Independent |16 18 19 20 22 2-5l 26% 29% 32% 3T 33 4QE 43 L]
Subclass of Subclasa
5 Maximum Benarit Normal Dapendent on | Independent 17 18 13 20 a1 23%  26% 29% 3% 3h# 37 ot a3d L]
Swbelass of Jubclaza .
6 |Moat Likely Subclass Normal Dependent on | Independant 7Y 18 19 20 2] 23 6% 29% 32 3+ 3TV NoR 43e -
Subclase of Subclass
T | Maxlmum Benerit Nonparametric Dependent on | Dependant on | 38 18 17 19 20" 25% g% Q9% 33 34 374 yob  p3E [
Subclass Jubelass
B |Maximum Benefit Normal Dependent on | Dependent on § 17 18 18 19 117 14% 26% 29% 3% e 37F oe 43¢ I}
Subeclass Subclass =
9 Moat Likely Subclygss Normal Dependant on |Dependent on | 17* 18 18 14 13" 23" 25% 29% 32% qE 3TA j0" 43w -
Subclass Subelass
10 | Maximum Benerit Smoothed p 1 Ind. dent Ind d 18 W8 19 19 19 19 26% 2% 31+ 31* 33V 36" 43¢ 2
According teo Eg. 10 B of Zubelasns of Subclass
*In cases where the Spectral Diseriminant Line $s not uniguely determined, the value selected 1s the one most nearly equal to the original line.
Table 3: Summary of Performance Results Obtained for Varilous
Combinations of Conditlons.
Method Uaed for Clasaification Performance Measurea Described in Sedtlon 5
Two-Dimensional Table }Two-Channel Spectral Line| Channel 4 Threshold
Statistical A Prior{ Differentisl
Case { Claasification Criterion Representation { Probabllitiea Bepefits
E(R) | Py, (D)) Fyy ()] E (%) LP), (D) Py (S) 7 E (&) (F)5 (8)] Pyy (8)
] Original Spectral Line - - - - - - - - - - - -
1 [Maximum Benerit Honparametric Indeptndent | Independent |95.T7| 3.26 3.29 45.69 | 3.33 3.29 62.43 | 38.97 44.83
of Subclass |of Subclass .
2 [Maximum Bensrit Norawl Independent | Independent |95.07[ 4.37 2.69 95.07 | 4.37 2.69 62.43 | 38.97 4&.83
of Subclass of Subzlasa
3 [Moat Likely Subclass Normal Independent | Independent |[95.07[ 4.37 2.8% 95.a71 | 4.37 2.69 - - -
of Subcless [of Subclass .
4 | Maximum Benefit Nonparametric } Dependent on | Independent |97.0¢)| 6.53 o.19 96.9k | .70 0.79 73.24 [ 79.M 1.%9
Sebolass of Subclass
5 | Maximum Benerit Normal Depandent on | Independsant [356.61] 6.20 1.58 96.561 | 6.20 1.58 73.24 | 70.41 1.9%
Subclaze of Subclass
6 |Most Likely Subelass Normal Dependent on | Indapendent [96.61] £.20 1.58 96.61 | 6.20 1.58 - - -
Subclass of Subclass
7 Naximum Benefit tric D t on on | 94,87 2.25 7.78 94.91 2,32 T.%90 Th,93 0.00 100.00
Subclass Subclasz
B |Maximum Benerit Normal Dependent on | Dependent on | 94,88 | 2.9¢ 4.5u 98,88 | 2.90 LY T4.93 0.00 | 100.00
Subclans Subclasa -
9 |Most Likely Subclass Normal Dependent con ] Dependent on | 94,57 2.16 9.56 94,57 | 2.16 9.56 - - -
Subclany Subcleas
10 | Maximum Banerit Smoothed | Nonparametrio Independent Independent |35.59 3.13 3.53 95.64 3.13 3.54 62,43 38.97 h%.83
According to Eq. 10 of Subclass of Jubclass
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