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I. ABSTRACT

The results of observing the radiation from lightning dis-
charge processes by William L. Taylor has indicated that radio
frequency electrical activity was associated with the tornade~
producing severe storms that struck Oklahoma City during April,
1970. This paper reports our findings as the result of analyz-
ing Taylor's atmospherics rate data employing the techniques
of time series analysis and pattern recognition. It shows the
promise that sferics rate data can be used to establish unique
signatures for the task of forecasting various severe weather
patterns, however an extensive analysis of more data is needed
before affirmative conclusions can be drawn.

II. INTROBUCTION presently in use.

In this paper we intend to answer some of the The foundation of this research is based on
questions concerning the feasibility of designing atmospheric disturbances producing various electro-
a prediction and warning system for severe weather maghetic signals containing certain characteristics
conditions employing the techniques of time series identifiable to the type of storm which has gener-
analysis and pattern recognition. The problem is ated them. Specifically, particular effort has
motivated by the steadily increasing massive com- = been directed toward forecasting tornadoes {Taylor,
puter applications in weather research and the 1972) in which these signals are referred to as the
promising experimental results obtained by re- electromagnetic signature of the tornado. To exa-
searchers observing the major radio frequencies mine this possibility Taylor has designed an experi-
of etectrical activities associated with severe ment gathering sferics data during the Spring, 1970
storms. tornado season in Oklahema {Taylor, 1961), in which

the rate of occurrence of sferics were observed by

To a Targe extent, most of the current know- averaging the number of responses of a resonant
ledge on severe storm forecasting has been based circuit per unit of time at 5 amplitude levels for
on identifying the different characteristics of each frequency channel extending from the VLF into
the severe weather through the mediums of radar the VHF, the experimental set-up and the data ob-
and/or by satellite imagery. However, it is also tained has been described in detail by Taylor (1973).
known that a large majority of the various types This data forms the basis for our preliminary ana-
of the severe weather encountered exhibit the Tysis and interpretation, Based upon one section
common characteristic of electrical disturbances, of & season's data, we wera able to show that the
called atmospherics, or simply sferics, and based severe weather conditions indeed inherit their
on the recent research results of Taylor (1972), unique signatures respectively.

Hughes and Pybus (1972), and others, there is evi-

dence indicating that an electronic detector cap- To be sure of no possibility of the duplication

able of observing the rates of occurrence of at- of this research with other efforts, more than two

mospherics combined with modern data processing hundred documents have been collected, studied and

technigues will be able to do a better and faster classified into six topics, as shown in the BibTio-

job of forecasting and detecting the severe weather graphy on Tornado Research (Wang and George, 1974).

as compared to the conventional techniques This report clearly indicates that the research

. being done in the detection and prediction aspect

constitutes the least amount of effort (approxi-

*This research work has been supported by a mately 8.59%) in total research on tornadoes up to

NASA research grant, NSG 5020. - this date.
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The research has been carried out in the
following three orderly stages: (1) Data Acqui-
sition, {2) Data Preprocessing and Feature
Extraction, {3) Severe Storms Recognition. The
results of the third stage is the final goal and
the first two stages are the pre-requisite for the
third. However, only the findings of the first
two stages will be reported here and the last
stage of research constitutes the subject matter
to be discussed in a followup paper.

I11I. DATA ACQUISITION

The data acquisition system in the context
of our framework is somewhat different than the
conventional systems where field or laboratory
experiments are performed to acquire the data.
Instead, our system involves the acguiring of
data through the cooperation of Dr. William Taylor
of ERL/NOAA, and what 1s meant by data acquisition,
for our purposes, is the acquiring of data that
will result in an effective analysis.

We have 55 figures of Taylor's 1970 Oklahoma
data, obtained using his electronic tornade detec-
tor (Figure 1}, supplied by him in photographic
form. Based upon only one season's sferic rate
data of severe storms, a total of 6 classes {pat-
terns) of severe storms has been designeed; (I)
tornadoes, {II) decayed tornadoes, {III) lightning
discharges, (IV} thunderstorms, (V} decayed thun-
derstorms, (VI) funnels and to each pattern above,
5 time series have been processed, To illustrate
Figure 14 and 15 are the best examples of a torna-
do's sferic rate activity {Taylor, 1961) and char-
acteristic of large bursts during the decaying
state of a thunderstorm are shown in Figures 27
and 55 of reference (Taylor, 1961). However, a
more complete classification has been suggested
by Taylor {1973} as follows: {I) tornadoes, {II)
thunderstorms, {III) hail, (IV} strong winds and
(V) funnels. The above classification is possible
because Taylor has incorporated more data since
1970 inte his analysis.

By looking at data in our possession, we have
decided to analyze the figures with the slow time -
constant, since the form that the data was received
tn {glossy pictures} did not permit high resolution
in the analog-teo-digital, (A/D), conversion of the
fast time constant data. This A/D conversion up
to the present time has been completed through the
use of an automatic x-y position recorder, GRAF/PEM
Science Accessories Corp., in conjunction with the
Digital tquipment Corporation. PDP-11/45 computer,
Our current data bank contains 108 time series in
total which approximates the original series in
digital form. Figures 2(a}, 2(b), 3{a), and 3(b)
show some of the digital time series using linear
interpolation between the digitized points as re-
productions of channel 16, Figure 6 {1ightnin
discharge) and channel 16, Figure 15 (tornado? and
also channel 28 of Figures 6 and 28, respectively.
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IV. DATA PREPRQCESSING AND FEATURE EXTRACTION

Since we do not have a large number of time
series available from one generator {one channel
of a particular storm) the assumption of ergodicity
was made in our analysis of sferics rate time
series of the severe weather. To put the sffrics
rate time series of a Vife cycle of a severe storm
in perspective, we show in Figure 4 a simulated
mode! consisting of the complete "birth” untii
"death” of a thunderstorm, As one can see in this
illustration there are 5 discrete steps, in which
the sferics rate up to time (ty) is considered to
be normal, in the interval (tz) to (t,) a time of
pre-thunderstorm is occurring, this is when the
forecasting of the storm should occur, then from
{(ty) to {tc) the thunderstorm occurs, (t.} to (tg)
the period of post-thunderstorm is present, and
beyong {tq) the period of normal activity returns.
As one may have noticed in this {llustration sever-
al guestions arise, that is: When do we choose
the times t;, t,, tc, and tg? Is the process ergo-
dic? 1s the process stationary in some sense? We
can not answer all these questions at this time
because we do not have enough data to be analyzed.
However, we are in a position now to state that one
of the most violent land storms, the tornado, has
exhibited, in the section of channel 28 of the
time series of Figure 15, April 18, 1970 we have
analyzed at least approximates a stationary process
in a preliminary examination.

Since nature is the generator of the time
series, it 1s unlikely that one time series will
resemble another time sertes visually in the domain
of time, Therefore, there is a problem of feature
extraction from the time series data that will
enable us to determine what time of severe weather,
1f any, is going to occur. We propose that the
empirical time series analysis technique of Parzen
(1965) and the familiar measurement of power spec-
tra technique of Blackman and Tukey {7958) will be
used as the main tools for extracting features
from the sferics rate data. The following equa-
tions give a summary of the type of analysis that
has been implemented by us 1n our preliminary study
of the sferics rate data.

The sample mean for N samples of the digita)
data (xj) is calculated as

- ] N"‘l
X=5 X
N jgp 71
and the unbiased sample variance s js obtatned
from N-1
Z 1 72
s s+ ] (x; - %)
B=1 450 1

The digital power spectral density may also
be defined, according to Blackman and Tukey (1958),
in two steps. First, the sample autocarrelation
function is computed:
H-r-1

=1 -
By = v kZO X Xpeppr F=0,1.2,0..,m



The subscript r corresponds to the variable T,
lag. The second step consists of taking the cosine
transformation of the autocorrelation function,
which yields

m
= ' Jpr
Gp at 2T+ 4 FZI R. cos ——

As pointed out by Otnes and Enochson (1972),

the alternative is to use the Fourier transform and

obtain

S VAV | 2 .
Gé ~ Nat Xq xq Nat ‘qu + g 0,1,2, 3 N

As m —+ N and N — =, G_ and GB will approach
each other. P

As is well known, if one is seeking to esti-
mate the spectral density functions of covariance
stationary time series, one cannot use the sample
spectral density function but must use windowed
sample spectra {Blackman and Tukey, 1958). The
computed spectral density matrix

g]](w) g]z(w) g]r(w)

Goq(w)  gpylw) g, {(w)
ﬂ('—'-") = 2;' 2? 2r

gpqle) 95w NREY)

where the diagonal element is called the spectral
density function and the off diagonal element is
called the cross-spectral density, has been proved
to be a valuable tool in our analysis, In order to
obtain specific numerical results, we have chosen
the "Time Series Analysis," BMDO2T Program of UCLA
and it has been executed by the CDC Cyber 74 high
speed computer. In addition to the essential con-
cepts described above, the program also computes
the phase shift between two time-series and their
transfer function. The numerical results are satis-
factory as shown in some sample plots such as in
Figure 5 (power spectrum), Figure 6 {cross-covari-
ance), and Figure 7 {coherence function of two time
series). Extensive experiments have been carried
out concerning the relationship between the accuracy
of estimation and the choice of sampling freguency.
It is worthwhile to mention here that numerous pre-
¥ious research works, other than weather research,
have been carried out to tackle the problem of
recognizing time series patterns. However, those
famiTies of time series often arise in the bio-
medical or seismic areas and present themselves
quite a different problem, and time domain approach-
es were often used. In addition, we have found
that the computation of coherence function is very
usefyl., The concept of coherence, for example,
‘between the series Xj(-) and Xk(-),

g5y ()2
W.k(w).=
J gyl Gpte

is related to a frequency decompesition of the
residual series when one uses either of the series
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Xj(') and Xi(-) to predict the other {Parzen,
1965).

The task of classifying various severe storms
can not be accomplished unless we can find unique
signatures for each severe storm. However, the
signatures are complicated enough that we need not
one, but multiple features as well as an ingenious
way of processing these features. So the problem
all boils down to the success of extracting fea-
tures satisfying some criteria.

Looking at the computer printouts, the esti-
mated spectral and cross-spectral density func-
tions all give a small number of distinct peaks
occurring at several distinct frequencies. For
comparison purposes, a threshold of 20 has been
set on the amplitude of the peaks, which limits
the amount of data entering the above mentioned
estimated spectral density matrix. Features
extraction has always been an important problem
in pattern recognition research and many important
aspects should be considered as described by Fu
et al (1970). In this problem, the peaks of the
spectral density function with different ampli-
tudes occurring at distinct frequency components
serve as our principle discriminant information
for time series patterns. To complete the ana-
lysis of unique signatures of severe weather
patterns, we put the data in a learning algorithm
called (M,N) algorithm (Wang and Burns, 1974) to
obtain the desired results.

IV. RESULTS AND INTERPRETATIONS

We have selected 30 time series from our data
bank of 108 time series to be computed. These
time series correspond to channel 4 {10 kHz,

10,0 v/m), chanpel 7 (31.6 kHz, 1.0 v/m}, channel
8 {31.6 kHz, 3.16 v/m), channel 16 (316 kHz,

0.316 v/m) and channel 28 (3.16 MHz, 0.316 v/m)

of Taylor's original data (Taylor, 1972) of Fig.
15 (class I, Tornado), Fig. 16 (class 1I, decayed
tornado), Fig. 6 (class III, lightning discharge),
Fig. 19 (class IV, thunderstorm), Fig. 27 (class
V, decayed thunderstorm), Fig. 23 {(class VI,
funnel). However, only the computational results
of channels 16 and 28 will be tabulated here in
Tables I and II, without losing much of the gener-
altty in illustrating our proposed techniques of
signatures analysis.

A. POWER SPECTRA

Table I tabulates the peaks {designated as
with a positive derivative on the left and a nega-
tive derivative on the right of the power spectrum
density graph) of the spectral density matrix
above a threshold of 20. The time series appear-
ing in the vertical direction represents the first
one and those in the horizontal direction repre-
sent the second one in the cross-correlation,

By looking at the auto-power spectrum for
class I, c28, one can see that 0.35 Hz is the only
major frequency component, other than the d.c.
Through further investigation of the remaining



auto-power spectrums of ¢28, one can note that
class I, ¢28, is the only element that contains
this 0.35 Hz component, Figure 8, a plot of the
peaks of the auto-power spectrums, reconfirms
this, but goes further in suggesting that the
tornado has the highest first frequency component.
It is interesting to note here that Taylor (1973)
suggested that ",.. the parameter most indicative
of tornadic activity is the number of bursts of
high atmospherics rates at frequencies above

about T MHz" can easily be verified from computer
print-out in a very precise term as "one of the
parameters most indicative of tornadic activity

is the first frequency {number of bursts) of the
spectral density, of high atmospherics rates at
3.16 MHz (channel 28 in Taylor's original data
(1971), is 0.35 Hz which is higher than any other
severe storm",

Also from Table I, we have noted that when
class II, c16, is crossed with class II, c28, a
unique frequency component arises for class II
{a decayed tornado).

B. CROSS-POWER SPECTRA

Another set of important features for signa-
tures analysis can be obtained from the estimation
of cross-power spectra. The first row of Table I
tabulates the peaks as a result of taking channel
28 of a tornado cross-correlated with all classes
of channel 28. For comparison purposes, all the
components above the threshold of 20 are plotted
in Fig. 9 instead of just the peaks, the differ-
ence s even more striking. In the case of the
tornado, there exists many more freguency compon-
ents as the result of cross-correlation. If a
standard mask of a tornado can be established and
stored in the memory of a computer, the tornado
can be un-mistakenly detected.

The existence of multiple channels from
Taylor's data suggests that the cross-correlation
can indeed take place between time series of two
different channels. MWe have experimented by com-
puting the estimated cross-power spectra of channel
16 of all classes with channel 28 of tornado {not
shown in Table I, note that this is different as
compared with the 7th row of Table I), and the
results are plotted in Fig. 10. The features shown
in Figure 10 are very distinct and they are not
duplicated when the tornado time series of channel
28 is replaced by the severe storms other than the
tornado. The 7th row appeared in Table I does
single out the class of funnel because of a strong
peak occurs at 0.20 Hz. Similarly, if channel 16
of all classes are cross-correlated with the funnel
data of channel 28, the decayed thunderstorm (no
other peak exists except the d.c. component) and
the funnel (the Jowest non-d.c. component at 0.10
Hz) could have been easily identified. In fact,
the whole spectral density matrix of Table I con-
tains important information.

C. CORERENCE FUNCTIONS

It remains an open question whether it is
more informative to plot the coherence wjk(w) or
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the residual spectral density functions, {Parzen,

1965), but we have decided to compute the coher-
ence square and some results are summarized in
Table II. In the process of computation, there
are numerous instants that the value of coherence
square are not computable due to a negative or
zero spectral estimate or too high due to a samp-
ling error. The occurrence of these phenomena !
reflects the violation of some assumed properties
for some time series, nevertheless, Table II pro-
vides interesting information. It becomes quite -
clear by inspecting Table II that the behavior of
a decayed thunderstorm is the most unpredictable
case as compared with all others, followed by the
cases of thunderstorm and funnel with much lesser
degree. Relatively speaking, the classes of
tornado, decayed tornado and 1ightning discharge
are much more similar in nature, The above obser-
vation can even be confirmed visually by Inspection
if these corresponding time series were displayed
from our data bank.

D. TIME-VARYING PATTERNS

It becomes obvious from Taylor's data that
weather phenomena 1s a dynamic process. Hence the
analysis of the sferic rate data for various stages,
shown in Fig. 4, of the formation, especially the
relationships among them, becomes very important.
Unfortunately, the very limited one season's data
does not provide enough data base for the analysis
of thes kind especially when Taylor's original .
data supplied to us were available only in uncon-
nected sectional pieces. However, we were able
to make some isolated observations; (1} the sferics

rate time series of a tornado behaves guite differ- -

ently at the peak of activity and after the peak
{Table I} where the decayed tornado has a much
wider bandwidth, but the form of the series does
not vary drastically (Table II}. (2} the magni-
tude of sferics activity reduces considerably after
a thunderstorm is decayed {Table I). (3) obvious--
1y, the thunderstorm process inherits extremely
high sferics activity where the level of activity
decreases considerably in the decayed pericd.

¥. CONCLUDING REMARKS

No affirmative conclusicon can be drawn at
this time because we have analyzed only a single
season's data taken at a specific geographical
location, but the analysis provides a sound ground
for understanding the nature of the problem. We
are not in a position to recommend a complete pre-
diction and detection model unless we are willing
to make a number of assumptions which have not
been fully tested yet. However, it is not unrealis-
tic at all to Took into some working mathematical
models for the purpose of signatures identification
and recognition of severe storms. These results
will be presented in a forthcoming paper. It seems
safe to postulate that most features will be pre-
sent in any severe storms but not all of the fea-
tures in every occurrencé. It is possible to
build a detector taking a probabilistic situation
into consideration. In fact, one can construct a
system in a manner where the decision is reached
only when the reenforcement with repeated verifica-

¢




tion can be established. The selection of features
has been discussed before and the proposed models
based upon the learning of features can be achieved.
The powerful linguistic approach which provides all
possible combinations of features for a finite
number of patterns, has been proven to be an invalu-
able tool for time varying pattern classification.

In conclusion, the time series analysis and
pattern revegnition techniques can be proven to be
very attractive and useful methods in the study of
weather patterns, and in order to build a practical
prediction and warning system, much more sferics
rate data must be analyzed. We feel strongly that
the study of sferics rate data shows real promise
for building a forecasting system capable of pro-
viding useful information a priori to the occur-
rence of a severe storm.
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channel 28 class 1 class 1I class 111 class IV class V class VI
c 28 c 28 c 28 c 28 c 28 c 28
channel
28 and 16 _ _ .
0.00 Hz; 54.81 0.00 Hz; 20.1]0.05 Hz; 35.2 | 0.00 Hz; 38.6
class 1 0.35 Hz; 35.
c 28
0.00; 52.4  |0.00; 22.1 | _ s 0.00; 45.9
class I 0.15; 33.0
0.40; 33.3
cz8 0.50; 26.
0.00; 64.1 . . 0.00; 34.4
class ITI 0.15; 40.0
c 28 0.40; 39.2
0.00; 309.2 [0.00; 109.9 0.00; 54
class IV B
c 28
0.00; 72.0 0.00; 24.2
class V
c 28
0.00; 94.8
class V1 U.EE; %%*%
c 28 ﬁ’ 0- Y .
0.00; 22.3 0.00; 23.0 0.00; 28.9 0.10; 33.7 0.00; 24.7
class I — - 0.20; 29.7
¢ 16 "
0.05; 31.0 | 0.00; 61.0 (.00; 23.8 0.20; 31.9
class 11 - 0.15; 22.5 - 0.30; 38.9
c 16 I :
0.70; 33.7 0.00; 24.7
class I11 F“‘ - - 0.20; 29.2
c 16 |
0.00; 150.7 0.00; 83.0 0.00; 68.4
class IV 0.10; 65.7 - 0.20; 46.4
c 16 0.30; 3l.0
0.00; 97.7 0.00; 80.3
class V
c 16
0.00; 23.1
class IV 0.10; 32,6
c 16
Remarks: The first number represents frequency component in Hz; the number underlined denotes the

peaks amplitude above 20.

Table I:

Tabulation of the peaks of the spectral density matrix.
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channel 28
class I ¢lass I1I class 1I1 class IV class v class VI
channel c 28 c 28 c 28 c 28 c 28 c 28
28 and 16 _
- - . 5.0 Hz; 0.81 | _
class I. — - —
o4 28 X 'Y
*k %
2.25; 1.00 ___
: —_ —_— 2.65; T1.00
class I] 5% 598
c28 X 3.50; T.00
*k X *%
1 Il 0.90; 1.00 2.45; 1,00 -
class I 3.65; 0.9
c 28 X
Exd
class IV x : At least one value is not computable 0.95; 1.00
c 28 due o a negative or zero spectral b
estimate *k X
. . 3.0; 0.84
class V ** i At least one value is too high due
¢ 28 to sampling error.
X
class VI
¢ 28
— 2.35; 0.91 -
) - — - 2.85; 0.85
! Class I 3.45; 0.87
ﬁ 4 C ]6 ;
! : X X **
- 1.75; 0.82 .
1 I "__ - - 2.00; 0.86
class 11 3.25; 0.91
<16 4.00; 0.84
¢ 0.90; 1.00 2.35; 0.90 .
:,}‘\l C]aSS III I - e 2.85', 0-85
' c 16 3.45; 0.87
0.30; 0.98 2.90; 0.94
3.05; 0.92 — — — 1.95; T1.00 3.05; 1.00
class IV 3.75; 0.92  |3.40; 0.90
c 16 4.05; 0.88 3.60; 0.98
X X *x
class V - - - - __-
¢ 16 *x* *k
i - _ 3.45; 0.98 [ __ 2.70; 0.95 | __
class VI
c 16 X
*h

Remark: The data shown denotes the peaks of the coherence square {underlined) above 0.80 at frequency
components in Hz,

Table II: Tabulation of the peaks of the coherence function of two time series.
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Figure 8 Distinct peaks at discrete frequencies
of the power spectra of channel 28 for various
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Figure 10 The result of tornado time series
{channel 28} cross-correlated with all



