Reprinted from
Symposium on
Machine Processing of

Remotely Sensed Data

June 29 - July 1, 1976

The Laboratory for Applications of
Remote Sensing

Purdue University
West Lafayette
Indiana

IEEE Catalog No.
76CH1103-1 MPRSD

Copyright © 1976 IEEE
The Institute of Electrical and Electronics Engineers, Inc.

Copyright © 2004 IEEE. This material is provided with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of any of the
products or services of the Purdue Research Foundation/University. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

THE EARTH RESOURCES INTERACTIVE PROCESSING SYSTEM (ERIPS)

IMAGE DATA ACCESS METHOD (IDAM)

A. E. Pape and D. L. Truitt

International Business Machines Corporation
Federal Systems Division
Houston, Texas

I. ABSTRACT

The Image Data Access Method (IDAM) was
developed for NASA at the Johnson Space Center as
the access method for the Earth Resources Interac-
tive Processing System (ERIPS). It was designed to
satisfy the need for an image data storage technique
which is very efficient with storage space and data
access time, but which also provides direct retrie-
val of all of the image data and easy programmer
utilization. A set of eight user macros have been
provided which satisfy the utilization requirement,
and the result has proven to be a very successful
image data storage and retrieval technigue.

II. INTRODUCTION

Remotely sensed data in general, and that
collected by multispectral scanners in particular,
consist of large volumes of multi-dimensional -data.
The processing and analysis of this data normally
depends on its consisting of groups or fields of
data which are alike; i.e., intensity readings from
a single object type. However, there are often more
than one group of each object type within each image,
and the data from all fields of each type need to be
processed as if they were a single group when signa-
ture definition; i.e., class statistics calculations,
is to be performed. The magnitude of the data and
the field structure nature of the data require
special storage and retrieval techniques in order to
allow data analysis and information extraction using
EDP equipment, without data magnitude and nature
being a limiting factor in the processing. The
storage and retrieval technique must contend with
large volumes of data, which prohibits main core
storage or even direct access storage of all of the
data until it is needed for processing. But when
Processing begins, the storage and retrieval system
must provide quick and easy access to data from like
fields which may be in widely differing segments of
& large image, so that they may be processed almost
simultaneously.

Largely as a method of enhancing processing
Speed by reducing the number of calculations, the
State-of-the-art in Earth Resources data analysis
apd information extraction also requires the capa-
bility to select or eliminate bands or channels of
multispectral data in response to machine-aided or
external feature selection determinations. In

1A-18

addition to the computational savings from channel
elimination, the results for a particular analysis
technique are often improved if only a subset of

the available data is used in the analysis. In

some cases, a particular analysis technique could
not be used at all if channel elimination were not
possible. For example, a computation involving the
inversion of a covariance matrix would not be possi-
ble on data having correlated channels.

All of these considerations place demanding
requirements on any access method which opts to
serve as an image data storage and retrieval
systemn.

ITI. CONVENTIONAL ACCESS METHODS

An analysis of the data access methods avail-
able with general purpose EDP hardware reveals that
none of them can provide the wide variety of acces-
sing options required by typical data analysis
programs.

Sequential access methods provide only the
capability to read entire data files in order, and
offer no assistance to the program which wishes to
process only selected records or parts of records
from the file. Thus, the program must read to the
desired starting point within the file, read the
records from that point, and select the desired
records or parts of records to be processed. This
presents a considerable I/O overhead to the ansalysis
program, particularly if the data is to be processed
in a natural order (i.e., by channels and fields),
because multiple reads of the same data are
required.

Indexed sequential access methods provide the
capability to start at a key-selected record and
retrieve all records in key~order from that point.
This method avoids the necessity of reading to the
start of the desired data, but provides no assis-
tance in selecting records from that point. Also,
the reading and writing of keyed files is, in gene-
ral, slower than reading and writing unkeyed files.

Direct access methods provide the capability to
retrieve any one record by relative position within
the data set. The direct method thus allows com-
plete record selection freedom. But since the
accesses can be random, no loock-ahead reading by the

access method is possible. A further problem is

that the analysls program must spend considerable
effort in keeping track of the next record to be

read.

None of the standard access methods with which
we are familiar, other than very complex and conse-
quently very slow datas base management systems,
provide any facility to retrieve only a part of a
record or only selected records automatically.
These two facilities plus the maximum attainable
access rate were considered by the designers of the
ERIPS to be essential to the development of data
analysis progrems with minimum complexity and repe-
tition of code which would execute at or near the
CPU bound rate.

IV. IDAM PHILOSOPHY

Since the required facilities could not be
obtained in any existing readily available access
method, NASA and IBM made the decision to develop a
specialized Image Data Access Method (IDAM) for
ERIPS. The ERIPS data handling techniques utilize
both.tape and direct access storage of image data.
The bulk storage medium is computer-compatible
tapes (CCT's). When an image is required for pro-
cessing, it is read from the CCT using conventional
access methods and written to disk via IDAM. A1l
data analysis programs then access the data from
disk by use of IDAM. Besides moving the required
data from a low speed to & high speed medium, this
process .also transforms the data from the various
CCT formats (LARSYS II, S-192, ERTS-BULK, ERTS-
PRECISION, UNIVERSAL) into the single IDAM format.

The IDAM storage sequence is by line and by
channel within lines. All pixels of channel-one,
line-one, referred to later as a channel-line of
data, are stored first, followed by all pixels for
channel-two line-one. All channels of line-one are
followed by all channels of line-two and so on.

The data is stored on the device in the largest
physical blocks the device will support, and logical
channel-lines of data are divided into more than one
physical block as needed.

As IDAM writes an image to the device, control
information is written with the data which allows
the physical block containing any specified channel-
line to be easily identified. This information
includes (1) a channel mask specifying which chan-
nels are present in the images, (2) the number of
pixels in each line, (3) the number of lines in the
image, (4) the number of bits in each pixel, (5)
line and pixel skip factors (explained below), (6)
the line and pixel numbers of the first pixel image,
and (7) the number of bytes of file and line ancil-
lary data stored with the image.

The basic retrieval technique is straight-
forward. Using the information described above,
IDAM computes the relative track number and dis-
placement within that track of the requested data.
IDAM then builds a set of I/0 commands (a channel
program) to (1) position the disk's read-head to
the proper track, (2) skip over the part of the

1A-19

track which precedes the desired data, and (3) read
the desired data into a main storage buffer from
which it is moved into the requesting program's
storage area.

By use of this basic technique, an access
method has been constructed which allows a user
program to quickly and easily retrieve any desired
subset of an image, in terms of only selected chan-
nels, lines, and pixels within lines.

V. IDAM TECHNIQUE

Once the disk read-head is in position, all of
the data, or any subset of the data, from a single
track can be transferred into main storage buffers
in one revolution of the disk, provided the data is
being read sequentieally by a single channel program.
Typical disk track sizes range from approximately
TO00 bytes to approximately 13000 bytes per track.
There are few images for which several channel-lines
of data can not be contained within one track. 1In
order to optimize the speed of the access method
whenever possible all of the individual channel pro-
gram sequences, which read data from the same track
by positioning the read-head to the start of the
track, skipping to the desired channel-line of data
and then reading the desired data, are combined into
a single sequence which: (1) positions the read-head
to the track, (2) skips to the first data segment to
be read (of course, if the data start coincides with
the beginning of the track, this step is skipped),
(3) reads the desired data, (4) skips to the next
data segment (provided that there is data between
the desired data segments which much be skipped;
otherwise, this step is skipped), (5) read the next
segment of data, (6) repeat steps (L) and (5) until
the end of the track is encountered. To further
optimize the channel program when it is found that
no datae is to be skipped between consecutive reads;
i.e., when step (4) is not needed, the consecutive
data reads are combined into a single read of all
of the data.

Although the user has the option of specifying
the size and number of data buffers used by IDAM,
the normal procedure is to use two buffers of
default size; i.e., 2K or the smallest buffer that
will hold one channel-line of data, whichever is
largest. Sequences of channel program instructions,
as described in the previous peragraph, are combined
into a single channel program to fill one buffer.
The channel program is then complete and ready to
be executed to actually retrieve the data. As the
channel program to be used in filling a buffer is
being prepared, the appropriate buffer pointers and
channel-line lengths are calculated and stored in
the buffer's header which allows direct addressing
of each channel-line of data in the buffer so that
it can be quickly transferred to the users storage
area when it is requested.

VI. IDAM UTILIZATION

The IDAM philosophy and technique are straight-
forward; however, they can seem rather confusing to
the programmer who is inexperienced in writing

channel programs. Consequently, a set of eight user
macros were prepared. The macro parameters are
usually readily available apriori image or field
characteristics. Following is a list of the macros,
the functions they perform, and a typically coded
macro call.

ICLOSE - Issued when the creation or utiliza-
tion of an image data set on disk is complete.
ICLOSE flushes all of the output buffers and
issues an OS-CLOSE for the data set.

ICLOSE ISCBNAME

IDIRECT -~ Allows direct accessing and/or
updating of any information in an existing
image data set on disk, independent of a NEXTL
and image buffering, provided that no storage-
size increase is required by the updates.

IDIRECT ISCBNAME,WORKAREA,GET,MFANC,USERAREA,
LENGTH

IGET - Allows the user to retrieve into his
storage areas one channel's datas for one line;
i.e., one channel-line, of the image (or field)
as specified in the NEXTL. Subsequent IGET's
retrieve the next channel-line of data as
specified in the NEXTL.

IGET ISCBNAME,USERAREA

IOPEN - Allocates space for a new image data
set or locates an old data set on disk. An
0S-0OPEN is issued for the data set, and buffers
and work areas are obtained for processing the
image. If the data set is new, IOPEN creates
a pseudo-label for the data set which contains
the ISCB information which will be needed the
next time the image is IOPEN'4.

IOPEN ISCBNAME,INPUT,IMAGNAME

IPUT - Allows the user to output from his
storage area, to an image data set being
created on a disk, one channel-line of the
image, where the line specifications have been
provided in a NEXTL. Each subsequent IPUT
outputs the date for the subsequent channel-
line as specified in the NEXTL.

IPUT ISCBNAME,USERAREA

ISCB -~ Creates a table of image characteristics
and specifications, based on user-supplied
parameters, which become the psuedo-label for
a new image data set. This information pro-
vides the vital statistics needed by the user
in interfacing with IDAM and its macros and by
the IDAM algorithms in either creating a new
image or accessing an old image.

ISCBNAME ISCB (For input, no parameters should
be specified.)

ITRUNC - Is used in the load application pro-
grams to specify the actual number of lines of
data which were placed in an image data set so
that the unused space allocated by IOPEN can

be freed when the ICLOSE is issued.

ITRUNC ISCBNAME,GPRL,213 (GPRL contains the
last line number.)

NEXTL - Is used to identify the next (i.e.,
first) line to be processed by the next IGET or
IPUT. Other NEXTL parameters identify which
image bands are to be processed, the increment
to be used in skipping lines, the number of the
first pixel, the number of pixels and the skip
factor (if some pixels are to be skipped) of
the pixels within each line that are to be
processed.

NEXTL ISCBNAME,LINE1,BANDLIST,PXCHNGE=(PIX1,
PIXNUM,SKIP)

VII. IDAM IMAGE CREATION EXAMPLE

The following example builds an image on disk
via IDAM. The image has four channels, 117 lines,
and 196 pixels per line. The lines are output in
order.

Build ISCB

IOPEN ISCBNAME,OUTPUT,IMAGNAME

Select lines, channels, and pixels to be out-
put (for this example ALL)

NEXTL LIST=NLIST
Build line for output in area named DATA.
IPUT ISCBNAME,DATA
Branch back to build next line
ICLOSE ISCBNAME
Exit program
ISCBNAME ISCB MFANC=3060,USERCOM=1800,
BANDS=(1,2,3,4),LINEL=1
LINECNT=11T7,PIXEL1=1,PIXCNT=196

NLIST DC A({ISCBNAME)
DC X'FO00000000000000"' BAND1,2,3,k4
DC H'1! LINE SKIP FACTOR
DC H'1' FIRST PIXEL
DC H'196! PIXEL COUNT
DC H'1' PIXEL SKIP FACTOR
DC H'1l' LINE NUMBER
DC X't BYTE PIXELS
IMAGNAME DC CL12'MYIMAGE'
DATA DS 196X DATA AREA

VIII. IDAM IMAGE UTILIZATION EXAMPLE

This example reads various segments of the
image built above. The NEXTL list shown is an
example which could be modified by the program if
more than one field were to be processed. The list
illustrates the IDAM facility to select a subset of
channels, lines, and pixels within a line.

1A-20

IOPEN ISCBNAME,INPUT,IMAGNAME
Select subset to be processed

NEXTL LIST=NLIST

IGET ISCBNAME,DATA
Process one channel-line
Loop back to get next channel-line
Loop back to select next subset

ICLOSE ISCBNAME
Exit
ISCBNAME ISCB

NLIST DC A(ISCBNAME)
DC X'4000000000000000" BAND 2 ONLY
DC H'1l'
DC H'23" FIRST PIXEL
DC H'14! NUMBER OF PIXELS
DC H'1'
DC H'T5! FIRST LINE
DC xe HALF WORD PIXELS
IMAGNAME DC CL12'MYIMAGE'
DATA DS by

IX. EXTENDED CAPABILITIES

The exemples and descriptions in this paper do
not illustrate all of the capabilities of IDAM.
Three of the most commonly used extended capabili-
ties are discussed below. ’

Pixel core format. IDAM has the capability to
format data in the users data area in any of three
ways. Each byte of data on the disk may be mapped
into one, two, or four bytes in core. When two or
four byte pixels are requested, the data byte is
right justified with leading zeros in the larger
data area. This reformatting is very useful when
arithmetic operations are to be performed on the
data.

Pixel and line skipping. IDAM has the capa-~
bility to retrieve only every m-th line and/or n-th
pixel from a data set under NEXTL control. Also,
when the data is stored, only every m-th line and/or
. n-th pixel may be output and the pseudo-label will
reflect the skip factors. Thus, the original line
and pixel numbers may be used to reference the data
when it is reloaded. The skipping on retrieval is
very useful for display of large images.

Buffer parameters. IDAM, via the IOPEN macro,
gives the user the capability to specify the size
and number of input buffers to be used. This allows
the user to trade off speed versus storage in his
application.

X. IDAM EFFICIENCY

By means of the NEXTL macro, the user supplies
IDAM with all of the information needed in order to

determine which data is to be retrieved first, and
the pattern in which subsequent data is to be
retrieved. This information is used by IDAM to
anticipate I/0 demands. As soon as the NEXTL macro
is processed, IDAM prepares and executes a channel
program to fill a buffer with data from the speci-
fied starting point and in the specified pattern.
When the first buffer is full, a channel program is
prepared and executed to fill the next bufferfwith
data, picking up where the first channel program
left off and continuing in the same pattern. Thus,
when the application program asks for the next
channel-line of data via an IGET macro, the data is
already in main core and can be moved at main core
data rates into the user's storage using the
pointers that were stored in the buffer header when
it was filled. As soon as an IGET macro is execu-
ted which uses the last channel-line of data in a
buffer, IDAM refills it while the other buffer is
being processed. This process continues until the
end of the data in the image is reached, until
another NEXTL macro is issued and a different pat-
tern at a new starting location is begun, or until
no more data is processed out of the buffers by the
user's program.

In a similar manner, when an image is being
created, the data from each IPUT is accumulated in
a buffer until it is filled and then, while the
other buffer is accumulated, IDAM prepares and exe-
cutes a channel program to transfer the first buf-
fer of data to the disk.

XI. IDAM PROBLEMS

Over the years that IDAM has been used there
has been one problem which has consistently caused
trouble. That problem is one of timing in execu-
ting a channel program. If it takes the I/0 chan-
nel longer to resolve the core location for a
segment of data from a disk than it takes the disk
read-head to scan that segment of data, then the
"reading" gets ahead of the "resolving," and a
chaining check occurs in the execution of the chan-
nel program. The situation occurs when less than L
bytes (or 8 bytes, depending on the channel) of data
is being read or if full (or double) word boundaries
are not being maintained as buffer starting points
for each read instruction in the channel program.
At least one of these situations and sometimes both
are seemingly forced to occur when narrow fields,
less than 4 (8) pixels wide, are being processed.
This situation is aggravated by the fact that track
sizes are often not a multiple of 4 (much less 8)
bytes, and thus buffer address resolution has to be
put back in sync with word (double word) boundaries
at the end of each track. Not until recently has
logic been developed and verified to solve these
problems while maintaining the optionzation out-
lined in the IDAM TECHNIQUE. So IDAM has, until
recently, forced a limitation on ERIPS that fields
be a2 minimum of 4 (8) pixels wide.

A second problem has occurred in a special
study in which IDAM was being used to retrieve a
large amount of data into some very large user-
specified buffers. The result was a channel pro-
gram which was longer than 2K. The study was being

1a-21

B S - R A

performed on a virtual memory machine with 2K sized
pages. When this channel program was paged out and
back in, in the process of core management, Trans-
fer in Channel (TIC) commands were inserted at the
page boundary interface. When the channel program
was executed, the TIC commands caused execution
timing problems similar to those above, again
resulting in chaining checks. This problem was
solved by forcing the channel program to be formed
and executed in a fixed-page region.

XII. CONCLUSION

The capability provided by IDAM and its macros
has been used in research activities where flexi-~
bility in data selection and ease of utilization
for the application programmer was essential. Just
as importantly, the ERIPS is also the basic system
for a production-oriented project in which large
volumes of data are being processed in a timely
fashion. IDAM has solved the ERIPS image data
storage and retrieval problem so efficiently that,
unlike most image processing systems, ERIPS is not
I/0 bound but rather CPU bound in most applications.

1Aa-22

