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I. ABSTRACT

A model for the LANDSAT multispectral scanner
data, representing a generalization of the commonly
used Gaussian model, has been formulated and ana-
lyzed. The model hypothesizes that the data for
different crop types essentially lie on distinct
hyperplanes in the feature space. Tests of this
model reveal that: (1) the agricultural data from
any single acquisition (i.e., four-channel) of
LANDSAT are essentially two dimensional, regardless
of the crop type; and (2) the data from different
sites and different stages of crop development all
lie on planes which are parallel. These findings
have significant implications for data display,
classification, feature extraction, and signature
extension. .

II. INTRODUCTION

Standard models used in classifying remotely-
sensed multispectral data from agricultural sites
start with an assumption that observations from a
field constitute a sample from a probability dis-
tribution characterized by its crop-type. In most
cases this probability distribution is assumed to be
Gaussian, completely specified by a mean vector and
a dispersion matrix. Estimates of these parameters
based on a sample characterize the crop-type, and
are called its "signature." This model will be
referred to as the point-signature model.

Experience with LANDSAT multispectral scanner
data, however, has shown that the average values of
observations from different agriculturael fields of
the same crop usually vary much more than would be
expected under the assumption of a common probabili-
ty distribution. As an example, Figures 1 and 2
provide plots of mean vectors for several wheat and
nonvheat fields in a LANDSAT subframe. These data
were collected in four different passes of the
Satellite over the seame location at different times
durfing the growth cycle of wheat, each pass contri-
buting & 4-vector of observations. The idea of
using data from multiple acquisitions at different
biclogical phases of the wheat crop to estimate
wheat acreage in the United States is currently
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being used in an experiment being conducted by NASAL,
In Figures 1 and 2, the variability of data within
fields has been indicated by bars of length two
standard deviations for some representative fields
and channels. As can he seen, the variability of
the mean values is much larger than would be expec-
ted from the point-signature model. In fact,
hypothesis tests for equality of mean vectors
across fields usually fail even if the pixel-to-
pixel correlation structure of the multispectral
scanner data be taken into account.

The objective of the work presented in this
paper is to analyze a model for the data which
generalizes the point-signature model by permitting
g limited variability in the probability distribu-
tions associated with the different fields of a
class. The hope is that use of such a model will
aid with our understanding of LANDSAT data and lead
to improvements in our ability to classify these
data. The model is described in the next section,
and, with greater mathematical detail, in the Appen-
dix. Section IV presents the results of tests of
this model with the LANDSAT data from single and
multiple acquisitions, and discusses their implica-
tions for data display and classification.

III. THE HYPERPLANE MODEL

The model is described by the following test-~
able assumption: The mean values associated with
different fields of a crop-type all lie on a sin-
gle hyperplane of dimension r, which can be
determined from the data. That is, the mean vector
uij for the j-th field in class i has the form

Mig T Mor T Bi%yy (1)

where uoi and Ei are, respectively, a p-vector and

a pxr matrix where p (>r) is the number of channels
used in gathering the data. Under this model, the
hyperplane associated with the i-th class is repre-

sented by the pair (uoi’ Ei) and the r-vectors aij

account for the variability observed in the field
averages. The use of the model, if it is shown to




hold for LANDSAT data, lies in the fact that it
constrains the observed variability of field mean
values to lie within a space of lower dimensionality
than that represented by the number of channels.

The remaining dimensions are either noise or repre-
sent changes in the structure of the hyperplanes
across classes.

A likelihood ratio test for hypothesis (1) and

the maximum likeljihood estimates for uij’ uoi’ Ei’

and a,, are given in the Appendix. The derivation

iJ
of the test statistic, used to establish dimension-
ality r, and the maximum likelihood estimates of the
parameters have assumed that the data are multi-
variate normal, independent from pixel to pixel, and
have a common, known covariance matrix. Since these
assumptions are generally violated for LANDSAT data,
the distribution of the test statistic, shown to be
chi-squared in the Appendix, is only approximately
chi-squared.

IV. TESTING THE MODEL ON LANDSAT DATA

Single-Pass Data

The model was tested on LANDSAT data from
several agricultural sites with identical results.
As an example, results are reproduced here for four-
channel data from a site in Nebraska. These data
were taken from a set of known fields: +ten of wheat
and eleven of nonwheat. Field averages for some
of these are given in Table 2 and plotted in Figure
1. The model (1) was tested on data for each set of
fields separately, and then on all fields taken to-
gether. The test statistics and the estimates of
the parameters of the plane are given in Table 1.

The test statistic measures the total deviation
of the mean vectors of the fields in the class from
the hypothesized r-dimensional plane (r=0,1,2,3).
Suppose date are given for ki fields of class (i.e.,

crop type) i. Let ng and i& be, respectively, the

J J

number of pixels and the average value of the obser-
vations for the j-th field, J=l,2,...,ki, and let

Zi be the estimated covariance matrix for the fields

of this class. The values of the test statistic for
different values of r are given by

k
_ vl vy [ A—l = -
tir 'le 85 (xij'“ij;r) Ly (xiJ_uiJ;r)’

here Y,
wae ulJ;r

dimensional plane which gives the best possible fit
to the data. For example, u is the average

is the best estimate of uij on an r-

ijso

(over j) of X, is the best estimate of the
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mean value on the straight line of best fit; and so
on.

For each of the three classes (nonwheat, wheat,
and pooled data) in Table 1, there is a sharp drop
in the values of the test statistic between r=1 and
r=2. Note that the values of the test statistics
for r=2 in each case are large when compared with a
chi-squared distribution with the appropriate

2A-2

degrees of freedom. This, however, is to be

expected in view of earlier remarks about the vio-
lation of assumptions under which the distribution
of the test statistic was derived. The conclusion
from Table 1 is that these data (nonwheat and wheat)
all lie on a two-dimensional plane. ’

The plane of data variability for each of the
three classes in Table 1 has been characterized by

ﬁo and the first two of the orthonormal basis vec-
tors, e; and ej. o is a point on this plane, and

e; and e, span a subspace in which the vectors

{observation - uo} essentially lie. 1In spite of the

different look each characterization appears to have,
the planes so defined are nearly identical. For
example (using superscripts nw and w to denote iden-
tification of a vector with classes nonwheat and

wheat, respectively), it is easily seen that {elnw,

eznw} and {elw, ezw} span the same subspace; the
component of elnw along e1W is 0.997, and its total
component in the subspace spanned by {elw, ezw} is

0.9995.

To complement this geometric argument, we have
developed a chi-squared test for the "equality" of
planes. Using this approach, the test statistic for
the pooled data is partitioned into a sum of compo-
nents, which .provide tests for dimensionality,
parallelness, and equality of planes of the indivi-
dual classes. Use of this technique confirms the
conclusion from Table 1 that the planes determined
by the nonwheat and wheat data separately, are
identical.

A similar analysis of data from several sites
has led to the same conclusion; namely, the four-
channel LANDSAT data lie on a two-dimensional plane,
and the planes associated with data from different
sites and different stages of crop development are
all essentially parallel. .This fact has very signi-
ficant implications for data display, feature
extraction, classification, and signature extension.

Consider the following transformation of the
observed field means {i&}.
) 1 ] L
= 1
Yy [91 ; €2} €3 ) eu] x5

The transformation matrix is orthogonal and vector
i; gives the components of the observed field mean

in a new coordinate frame obtained by a rotation of
the o0ld one. The advantage of this representation
of observations lies in the fact that the first two
axes of the new coordinate frame are parallel to the
plane of data variability and the other two are
orthogonal to it. The first two elements of i& give

the components of the observation vector in the
plane of data variability, and each of the remaining
two is nearly the same regardless of the class from
which the observation came. '

The observed mean vectors for wheat and non-
wheat fields given in Table 2 (see also Figure 1)
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were transformed to get their representation in the
rotated coordinate frame. As a demonstration of the
near-parallelness of the planes of variability from
one set of data to another, the orthogonal matrix
used here is the one obtained from the data for 16
nonwheat fields from a site in Oklahoma. The origi-
nal and transformed observations are given in Table
3.

In the new coordinate frame, the relative
positions of the data are almost entirely charac-
terized by the first two components. A plot of
these two components on a plane retains the relative
positions of the data points as they were in the
original observations, and reveals the separability
(or, confusion) among wheat and nonwheat data not
apparent in the table of the original data.

Figures 3a through 3d give plots of the compo-
nents of the means of the nonwheat and wheat fields
in the plane of data variability for datsa acquired
in four different passes of LANDSAT over this
Nebraska site at times chosen to coincide with
distinct biological growth phases of the wheat crop.
The data shown in Table 3 are among those plotted in
Figure 2a. For each of the four sets of data
corresponding to four passes, the plane of datsa
variability used is the one determined for the Okla-
homa site referred to earlier. It should be noted
that variability seen in the last two components of
the transformed means would have been considerably
less had we used in each case the plane determined
by the data from that pass. The plane, after all,
is estimated by '"best" fit to data. The fact that a
plane that best fitted data from a set of 16 non-
wheat fields in Oklahoma at a certain time of the
year can reasonably fit the data from wheat and non-
wheat fields in Nebraska collected at four different
times of the year appears to be fairly strong evi-
dence for constancy (or, at least, parallellness) of
the planes of data variability.

Now consider the matter of classification of
data. The original hypothesis was that the vheat
data lie on a distinct plane which might be charac-
terized as its signature. This locsening up of the
standard point-signature model, it was hoped, would
account for much of the variability in wheat data by
disregarding the position of a data point on the
plane and taking the classification statistic as the
distance from the plane. For data acquired in a
single pass of LANDSAT, it was seen that no distinc-
tion can be made in the planes of variability for
the wheat and the nonwheat data. The position of
the data points on the plane, however, can be used
to discriminate among classes. Figures 3a through
3d, plots of the components of wheat and nonwheat
field averages in the plane of variability, show a
tendency for the elements of a class to group or
cluster. Since the location of points in the plane
is governed by the o vectors in the basic model (1),
discrimination can be based upon estimates of these
values. The maximum likelihood estimate of the a
asgociated with observation x belonging to the i-th
class is given by

oo ' -1 1 o -1 - )
a = (B zi E) R E zi (x ”oi)

and, asymptotically, o has a r-variate normal
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distribution with mean, say E&, which depends upon

the class and covariance matrix given by the
expression

L Yt -1

(' £,7% E)

Thus, a maximum likelihood classification procedure
in the plane is to estimate the o vectors from
training fields for a class, estimate their mean
value E&, and classify by minimizing the statistics

= = 31 -1 Fon
Hi = {a - ai) E I,7HE (o - ai)
over the choice of classes. This is essentially a
linear feature selection technique which reduces
the dimensionality by disregarding the noise contri-
buted by components outside the variability plane.
Tests of this technigue have yielded classification
results virtually identical to results achieved
using the original four-dimensional data. The prime
advantage of this technique for LANDSAT data lies in
the fact that classification results can be compared
visually with a plot in two dimensions.

Multiple-Pass Data

Test of model (1) with multiple-acquisition
data was also carried out for data from several
sites. Results of this part of the study are not
conclusive because it was difficult to find enough
data from locations having multiple passes and a
relatively large number of defined fields in the
different classes to perform a satisfactory analy-
sis. The tentative conclusion is as follows: While
four-channel data from the different acquisitions
taken separately lie on parallel planes, taken
together the wheat and nonwheat data tend to lie on
hyperplanes whose distinctness becomes more discern-
ible as the number of passes increases from two to
four. There, however, are some unresolved issues.

Results are presented here for four-pass
registered data from a site in Kansas. Data were
taken for a set of 42 known fields: 28 of wheat and
1k of fallow. The wheat fields were arbitrarily
assigned to one of two wheat classes so that each
contained 14 fields. The fallow fields constituted
class 3. The likelihood ratio test statistics for
dimensionality analysis were computed for each class
separately, and for class "ALL" consisting of all L2
fields. The likelihood ratio test statistics for
class wheat 1 are given in Table 4. The data for
each of the three classes were found to lie essen-
tially on eight-dimensional hyperplanes; the pooled
data for the three classes appear to lie on an
11- to 12-dimensional hyperplane.

The fact that the pooled data lie on a hyper-
plane whose dimensionality is greater than that for
the data for each class taken separately suggests
distinctness of the class hyperplanes. To determine
the relative orientations of the eight-dimensional
class hyperplanes in the feature space, the compo-
nent of each basis vector for the hyperplane of a
class was computed in the subspaces spanned by the
eight basis vectors of each of the other two
classes. Clearly, if the hyperplanes were parallel,
each basis vector for the hyperplane of a class



would be entirely contained in the subspace spanned
by the eight basis vectors for every other class.
The first seven basis vectors of the wheat 2 hyper-
plane were found to have components of length 0.937-
0.981 in the subspace spanned by the basis vectors
of wheat 1; the eighth basis vector, however, had a
large component (=0.8) out of this subspace. Only
the first five basis vectors of the fallow hyper-
plane had large components parallel to wheat 1
hyperplane. The inadequacy of data (an eight-
dimensional hyperplane fitted to 1k points in a 16-
dimensional space) makes it difficult to draw defi-
nitive conclusions, but it appears that the wheat 1
and wheat 2 hyperplanes are nearly parallel, while
the wheat and fallow hyperplanes are not. This,
though, is difficult to reconcile with the behavior
of the four-channel dats analyzed separately for
each pass.

It is instructive to examine how well the

wvheat 1 hyperplane fits the data from wheat 2. To
this end, maximum-~likelihood estimates of the mean
vectors of fields in class wheat 2 are computed on
the hyperplane of wheat 1. Table 5 gives the ob-
served mean vectors and the estimates for three of
the fields. In view of the large differences in the
observed mean vectors, the fit is surprisingly good.

The classification of data with the model of
distinct hyperplanes entails computation of the fol-
lowing weighted distances of the observation from
the different class hyperplanes

= _AI -1 _A
a, = (x W' T (x H) o

~

where x is the observation, ui its estimate on the
hyperplane of class i, and Zi the covariance matrix

for the fields in class i. The observation is
assigned to a class for which this distance is the
shortest. The per-field classification of wheat 2
data in wheat 1 and fallow using this procedure
assigned the data to wheat 1 with no misclassifica-
tion.

V. DISCUSSION

The test of the proposed model for LANDSAT
multispectral scanner data from agricultural fields
has yielded useful information on the structure of
these data. The two-dimensional representation of
the four-channel data by a known transformation
provides a valuable tool for data analysts. Impli-
cations of this structure of the data for feature
extraction and classification have been discussed in
Section IV. An additional aspect of crop classifi-
cation using LANDSAT data is the so-called signature
extension problem, which consists of estimating mean
observation vectors for a crop type at a site on the
basis of training data available at another site.
Clearly, the fact that the data must lie on a known
plane provides an important constraint for this
estimation procedure.

Preliminary analysis suggests that the conclu-~
sion on parallelness of the planes of variability
of date from different acquisitions may be strength-
ened--the planes mey be identical. Additional work,
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however, is needed to establish this. Experience
with a limited amount of nonagricultural data (water,,
mountains, roads, clouds, etc.) indicates that these
too may lie in the same plane as the agricultural
data, but, here again, additional work is required,

Tests of the proposed model using data from
four acquisitions during different biological phases
of the wheat crop reveal that the data, treated asga
16-dimensional vector, essentially lie on an eight-
dimensional hyperplane. Also, the hyperplaness
defined from multiple passes appear to be suffi-
ciently separated to allow classification based on
distance from the class hyperplanes. This distinc-
tion of the multiple pass hyperplanes, if not an
artifice of our limited data set, appears to be
inconsistent with the results from dimensionality
analysis of single pass datam, where the class
planes were found indistinguishable.

Perhaps a physical interpretation can be given
to the plane of variability of the ricultural
data. In a model developed by Kauth >3 an attempt
was made to extract from the data the variability
attributable only to changes in the soil type. This
was done by identifying in the feature space a plane
on which most of the variability of the soil reflec-
tances lay. The information on the green and yellow
crop development, it was concluded, lay in the
directions orthogonal to the plane. The result was
the so-called Tasselled Cap coordinate frame where
components of the transformed observation were iden-
tified with soil, growing vegetation, mature vege-
tation, and noise. In the transformations presented
in this paper, however, no such identification of
directions or planes could be made with the crop
phenology.

APPENDIX
Linear Functional Relationship Among Mean Vectors

To study the nature of variability among the
mean vectors of fields of a certain class, consider
the following model. Let there be p-variate normal
populations NP (My1s Z)5eens NP (uk, I} with a common

dispersion matrix. Consider the following hypothe-
sis on the functional relationship among the popula-
tion means

My = +Ea, 1=1,2,..., %k k>p, (A1)

where uo is an unknown p-vector, E is an unknown pxr
matrix of full rank (r<p), and ai is an unknown r-

vector. According to hypothesis (A.l), the popula-
tion means {ui} lie on an r-dimensional hyperplane

completely defined by M and E. Given the sample

means from these populations, a hypothesis test can

be carried out to see if (A.1l) holds for some value

of r and, if so, to identify the hyperplane by esti-
mating sy and E. DNote that My is a point on the

hyperplane, and, speaking loosely, the column vec-
tors of E span the hyperplane. The matrix E is not
uniquely defined, since the mean value ui does not
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change if E is replaced by EA, where A is nonsingu-

lar, and o is replaced by Ao,

Consider two special cases of (A,1): If u; =
Ug = ees = uk, it would be concluded that these

population means lie on a zero~dimensional hyper-
plane; i.e., r = 0; conversely, if the {ui} are

located randomly in the p-dimensional space,
hypothesis (A.1) would be rejected for all values of
r<p.

Suppose that n, observations are taken from
N (ui, Z) and ii is their average value (i =1, 2,

...» X). Let X be the overall average value and B
the between groups corrected sum of squares and
products matrix:

k k
X= ) n, X ] n,
i=1 Y [ g=1
k
= ¥ - x ¥ - %)t
B .z ng (xi x) (xi x)'.
i=1

The logarithm of the likelihood of the observed
sample means is then :

t =

F - v vl - .
; n, (xi ui) z (25 “i)

Il 15

1

The test statistic for likelihood ratio test of
hypothesis H_ (A.1) is

k
= i - t -1l (¢ _
L = min 'z n, (Xi ui) z (xi ui)
H i=1
o
x 1
= i X - - ty~l(y -
min .Z n; (xi Mo E ai) b3 (xi M E ai).
uO,E,ai i=1

From References “ and 5, minimization of the
expression on the right-hand side yields

= + ...
L Ar+1 + Ap R

vwhere {Ai} are the roots, arranged in decreasing
order, of determinantal equation
[B - Az} = 0,

and under the null hypothesis, L follows & chi-
squared distribution with (p-r) (k-r-1) degrees of
freedom

L ~ x2 {(p-r) (k-r-1)}.

Th%.likelihood ratio test for dimensionality consists
P
of computing {A,} and comparing n_ = z A
i J
J=m+l
0, 1, ..., p-1, with the distribution function of a

?m=
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x? with {{p-m) (k-m-1)} degrees of freedom. If n,.

and n are significantly small when compared to

r+l

their x2 distribution while n._ and n,._p are large,

1 2
then the dimensionality of the configuration of the
mean vectors is inferred to be r.

The above analysis assumes that the k normal
populations have a common dispersion matrix I,
which is known. If I is not known, an estimate can

be substituted in its place. The x2 test remains a
valid asymptotic test, though approximate for finite
sample sizes. The assumption of equality of the
dispersion matrices is usually justifiable on the
grounds that the tests on means are, as a rule,
sufficiently robust against this violation. The
computation of the test statistic, without this
assumption, requires difficult numerical minimiza-
tion.

To determine the maximum likelihood estimates
of the parameters {uo,E} of the hyperplane, consider

the following simultaneous reduction of matrixes L

and B.  There exists a nonsingular matrix M such
that
L = MM!
and
B=MAM
where
A= diag (Al’ Az, es ey A ).

P

Then, from Reference 5,

~ I le)
E=M[ T
o] o

consists of the first r columns of M, denoted later

~

as M;, and Hy = X.

The maximum likelihood estimate of ui is given
by:

O “1\1 (= -
= + -
Wy =E M (M~1) (xi X),

where (M 1)! consists of the first r rows of M1,
Because E in the basic model is not unique, M; has

frequently been replaced in our discussion by an
orthonormal matrix E derived from M;. This leads to
some simplification in discussing the planes. For
general E, the estimate of a, is given by &i =

(g =i g)~1 g ! (xi - 7).

Note that the likelihood ratio test statistic
n. is the sum of generalized Euclidean distances

between X, and u,
i i
k R ~

= = v oy=1 -
n, = iggi(xi w )t Tt (E - ),

and the r-hyperplane {uo,E} is obtained by a

weighted least-squares fit through the configuration
of {fi}, i=1,2, ..., k.
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Table 1. The Dimensionality Test Statistics
and Estimates

Degrees of Test o Orthonormal Basis Vectors
r Freedom Statistic Yo e) ez e3 ey
Nonwheat data 0 Lo 1038.0 25.234 0.409 -0.072 0.909 -0.0b7
(11 fields) 1 27 335.9 23.512 0.856 -0.242 -0.393 0.227
2 16 70.0 36.164 -0.077 -0.762 -0.059 -0.641
3 7 15.5 20.309 -0.307 ~0.595 0.129 0.732
Wheat data o 36 1153.2 26.113 ~0.1hY -0.436 0.685 0.566
(10 fields) 1 2h 274k 25,465 -0.265 -0.818 -0.502 -0.091
2 14 56.7 30.0k2 -0.813 0.129 0.306 -0.478
3 [ 1.4 15.266 ~0.497 0.352 -0.431 0.666
Pooled data o 8L 3505.5 25.639 -0.081 -0.420 -0.780 o.hsf
(21 rields) 1 60 1393.6 2h 412 ~0.177 -0.861 0.477 -0.009
2 38 155.8 33.343 0.76h 0.283 0.237 0.530
3 18 1.7 17.986 0.616 0.048 0.328 0.715
Table 2. Field Means and Their Maximum Table 3. Field Mean Vectors
Likelihood Estimates on the Plane in the Original and Rotated
of Data Variability Coordinated Frames
FIELD # NONWHEAT DATA WHEAT DATA FIELD # NONWHEAT DATA WHEAT DATA
Maximum Maximum
Likelihood Likelihood
Estimate Estimate Transformed Transformed
Field Mean |on the Plane || Field Mean | on the Plane [Field Mean | Field Mean Field Mean | Field Mean
1 2k 421 2k,398 22.500 24.863 1 24,421 49,624 22.500 42,757
21.816 21.853 23.012 22.926 21.816 T.437 23.012 1.807
34.053 33.937 24.817 25.096 34.053 6.323 2L4.817 5.660
19.158 19.188 12.329 12.351 19.158 6.408 12.329 5.854
2 23.933 | 23.542 27.000 26.597 2 23.933 50.910 27.000 48.203
19.867 20.057 26,233 26.458 19.867 11.679 26.233 2.151
37.233 36.628 28. 400 27.686 37.233 7.102 28.400 6.068
21.633 21.707 13.100 13.205 21.633 6.567 13.100 5.515
3 24,212 23.965 || 26.981 26.735 3 24.212 50.602 26,981 48,402
20.909 20.937 26.667 26.737 20.909 9.900 26,667 2.335
35.894 35.799 28.222 27.994 35.894 6.615 28.222 5.689
20.879 20.833 13.352 13.349 20.879 6.740 13.352 5.772
) 27.729 27.290 25.750 25.453 Y 27.729 56.955 25.750 52,854
27.708 37.753 23.854 |  23.998 27.708 5.364 23.854 T.25T
37.521 37.369 | 36.104% 35.645 37.521 5.664 36.104 6.325
20.0Lk2 19.955 19.750 19.806 20.042 6.434 19.750 6.279
5 2,700 24.819 21.455 27.236 5 24.700 45.165 27.455 53.81%
22,450 22.806 27.682 27.689 22.450 1.062 27.682 2.112
28.450 27.34k2 33,841 33.811 28.450 6.522 33.841 5.455
13.650 1k,042 1 17.%09 17.352 13.650 5.129 17.L409 6.177
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Table k.

Likelihood Ratio Test Statisties

for Dimensicnality Analysis
of k-Pass (16-Channel) Data

Statistics
Degrees of for Wheat 1

Dimensionality Freedom (1k Fields)
0 208 15,616.1

1 180 9,837.1

2 15k 5,898.6

3 130. 3,728.9

k 108 1,9L1.4

5 88 1,102.8

6 70 552.1

7 Sk 285.7

8 ho 139.0

9 28 53.4

10 18 25.5

11 10 7.8

12 I 1.6

13 0 0.0

1k - 0.0

15 - 0.0
Table 5. The Mean Observation Vectors for Fields

of Wheat 2 and Their Maximum-Likelihood

Estimates (MLE) on the Wheat 1 Hyperplane.

Field 1 Field 2 Field 3
Mean MLE Mean MLE Mean MLE
11 32.949f 32.870| 37.291 | 37.h91| 34.845 | 34.630
21 35.k24{ 35.107{ L42.400 { 41.8811 3B8.000 { 37.866
3| 35.848] 36.051| u6.418 | 46.285| M47.108 | kT.153
b1 17.071] 16.972] 22.945 | 22.859 | 24.101 | 2k.056
51 26.808) 27.311| 28.236 | 28.390 | 26.081 [ 26.695
6| 28.232] 28.696) 30.601 | 30.2781 26.507 } 26.713
T 31.838) 32.607| 36.945 | 36.607| 41.838 | ki.s27
8] 16.555] 16.595]| 19.654 | 19.501| 24.k05 | 2k.k22
91 4o.293| %0.785] M1.927 | 41.375] 40.905 | k1.87S
10| u6.040| hk6.432) k49,200 | 48.242| uB.790 | HB.UTT
11 | 52.859| 53.760| 54.909 | 54.025) 55.0Th | Sk.60b
12| 26.091| 25.995| 26.709 | 26.391) 26.993 | 26.876
13} 52.040f 51.351) 52.018 } 52.788)] 54.108 | 54.200
14| 63434 61.481| 61.273 | 61.466| 64.182 | 62.917
15| 67.566| 66.242| 66.073 | 67.956 | T4.115 | Th.578
16 31.727{ 31.461( 31.273 | 31.587{ 34.561 | 3h.627
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