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TREE SYSTEM APPROACH FOR LANDSAT DATA INTERPRETATION

-I..

R. Y. Li and K. S. Fu
School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

ABSTRACT

This paper describes a tree system approach
which interpretates highways and rivers from
LANDSAT pictures. The basic definitions of tree
grammars and tree automaton and a grammatical in-
ference procedure are first introduced. The in-
terpretation process is conceived as a process of
continuous verification of the hypothesized de-
scriptions of objects in the picture. The LANDSAT
imagery map of Lafayette, Indiana is used as a
training data set and tree grammar is inferred from
the interpretation process. The versatility of
this set of syntactic rules is tested on a differ-
ent data set and the initial results are reported.

I.  INTRODUCTION

As the ability of satellites to gather data
for the purpose of survey and monitoring of earth
resources grows, the need to fully automate the
recognition process of a large number of pictures
obtained by satellite photography is also becoming
more evident. In the past, the use of pattern
recognition techniques has been very successful in
the classification and interpretation of the data
taken from agriculture fields, vegetation, water,
soil, etc, However, these methods usually employ
only spectral and/or temporal properties of the
objects and neglect the spatial relationships among
classes in the picture. Difficulties could then
arise when one is dealing with smaller objects such
as bridges, highway, river, etc. because the sur-
rounding environment changes greatly the expected
reflectance of those objects due to the resolution
size. For instance, the gray level of a segment
of the highway is digitized from a combined re-
flectance of concrete surfaces, grasses, trees,
etc, Sometimes it is impossible to distinguish
this class from, say, suburban scenes where similar
features dominate. In cases like this, one has to
extract a certain geometric feature from the data
in order to interpret them more accurately. In
other words, properties such as shape, size, and
texture must be used to delineate one from the
other among classes of similar spectral properties.
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Often, the spatial relationships such as ''sur-
rounded by,'' ''near by,! and directional references
can also be explored to locate classes of large
areas where no definite shapes exist, such as those
found in land use classification. For instance, in
the study by Todd & Baumgardnerlon land use classi-
fication of the Marion County (Indianapolis),
Indiana, an overall accuracy of about 87 percent is
reported using only the spectral information.
Difficulties were encountered in the spectral sepa-
ration of grassy (open country, agriculture) area
and multi-family (older) housing. One solution to
this problem consists of spatially dividing the
data into urban and rural land use prior to classi-
fication. Over 95 percent accuracy of recognition
may be achieved by this manual preprocessing step
in their analysis. The use of syntactic methods
to describe the spatial relationship has recently
been suggested”. Brayer and Fu went further by
constructing a hierarchical or tree graph model to
contain the spatgal distributions of all classes in
the entire scene . For instance, the earth scene
consists of urban and rural area, and the urban
area consists of the downtown area surrounded by
the inner city area with near-by suburban area and
a system of highways. These classes are then
classified by utilizing their spatial relationships
which are expressed in terms of syntactic rules;
namely, those of a web grammar. The study under-
taken here is similar to this approach, but a

tree system is used as the main tool to interpret

.LANDSAT data where traditional approaches have not

achieved satisfactory results.
It. BASIC DEFINITIONS OF TREE SYSTEM

The use of formal linguistics in describing
physical patterna have received increasing at-
tention recently . The string representation has
been used very often due to the availability of
existing results in formal languages. But it is
inadequate and sometimes inconvenient for de-
scriptions of high-dimensional patterns or multi-
connected graphs, so there is a need of developing
higher dimensional pattern description languages.
Recently, Fu and Bhargava have proposed the use of
tree grammars for pattern description . Tree
grammars are generalizations of string grammars.



A tree grammar becomes a string grammar when the
ranks of all variables are one or zero. We shall
see that the use of tree grammars is justified
because of their ability to describe easily the
recursive nature of the physical patterns under
consideration., Furthermore, a tree automaton can
be easily constructed from a given tree grammar
to recognize the trees generated.

A regular tree grammar over <VT, y> is a four-
tupled G, = (v, v, P, S) where <V, y'> is a finite

ranked alphabet with Vo€V and y'/V. =Y, Vy

V - V., the set of non-terminals. P is the pro-
ductlgn rules_of the form A ~ B, if there is a
production ¢ * ¢ in P such that ¢ is a subtree of
A at a, and B is obtained by replacing the oc-
curance of ¢ at a by ¢. S is a finite subset of
T,, called axioms, where T is the set of trees
over alphabet V.

The tree language generated by a tree
grammar Gt is defined as

L(Gt) =
{a e T, | there exists Y € S such that Y => a}
T
where TV is the set of trees containing only
T

terminal symbols.

A tree grammar G, = (V, v, P, S) is expansive
if each production in P is of the form
Y - X
° N\
Y]"l’Y
n

where Y., Y:,e+00..Y are non-terminals, x is a
o 1? n ?
terminal,
We also know that for every regular tree

grammar G_, one can effectively construct a tree

automaton "M, such that T(Mt) = L(Gt) where T(Mt)
is the set of trees accepted by Mt' We are in-

terested in knowing the relation between tree
automata and tree grammars, since the patterns will
be described by a tree grammar and a tree automaton
can be used to recognize these patterns.

Let <VT, ¥> be a ranked alphabet and VT=
{x],.....xn}. A tree automaton over V; is a system
Mt = (Q’ fl,ooo-ofk, F) where

1. Q is a finite set of states

2, for each i, 1 & i <Kk, f is a relation

for Qy(x ) s Q

3. FcQ is a set of final states

If each f, s a function, fi: QY(xi) + Q, then Mt

is determinable. Otherwise, it is non-determi-
nistic.
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The response relation p of a tree automaton

Mt is defined as follows:

1. If xeV_, then p(x) +q iff g e Q

To
X
2. IfxeV.,n>o0, then -+
x T n>o e p‘// \ ) + 4
t‘...tn §
iff there exists SPEERERD a, € Q such that
fx(q], ..... qn) + q and
p(t.) > q., for 1 & i gn, toeTy -
T

The language accepted by Mt is defined as
TM) = {te Tv | there exists q € F such that
T

> q}.Mt and Mt are equivalent iff T(Mt ) =
). 1 2 1

We summarize the construction procedures. of
tree automaton for a regular tree grammar as
follows:

1. To obtain an expansive tree grammar
(v', v, P', S) for the given regular tree
grammar (V, v, P, S) over alphabet Vye

2, The equivalent nondeterministic tree
automaton is M, = (v'- Vs fl""'fn’{S})’
where fx (q],....qn) =
do if qo > x CIERETRL is a rule in P'.

If f. 1 £1 &k, is a function, them Mt
is determunlstlc otherwise, M is non-
deterministic.

As an example, if we denote a>, bY, ct, then
the following multi-connected graph

1

$

can be written in tree form as //\\

o— o

T A
ca ¢
Sometimes when the patterns are not quite linear

due to noise or distortion, we can apply a trans-
formational grammar to linearize them.

11, [INFERENCE OF TREE GRAMMAR

When the physical shape of the class under
consideration is completely known and fixed, it is
possible to write down the syntactic rules di-
rectly to describe its structure. |If this is not
the case, we have to construct a set of grammatlca‘
rules by examining a set of sample patterns known




to come from that class in order to describe that
particular class., This set of inferred rules
should be able to describe and predict other sample
patterns which are of the similar nature as the
original training samples and presumably in the
same class. Bhargava and Fu have sgggested an in-
ference procedure for tree grammars . The basic
idea consists of the following three steps:

1. Try to discover the syntactic structure
of each given tree sample by looking for repe-
titions and dependent relationships, called repe-
titive substructures (RSS).

2. Decide what sublanguages make up the
language and generate nonterminals for each sub-
language.

3., Combine equivalent nonterminals which have
almost the same sublanguages and determine the ap-
propriate relationships among sublanguages. The
flow chart implementing the inference procedure is
shown in Figure 1.

To start the inference process, we first find
the types of terminals or primitives that will fit
the subparts of the picture patterns for a given
window size. After this initial extraction
process, we have to decide the most probable
combinations of primitives which occur as neighbors
of each other in the set of observed training
samples. These combinations are then applied to
_ the training data set to test their recognition
effectiveness, When the result appears to be
satisfactory after some additions and deletions
of the combinations, we can choose this set of
patterns to represent the training samples. The
appropriate grammar can then be inferred from these
samples by following those three basic steps of
grammatical inference. This process of learning
can be repeated for higher levels if we are dealing
with patterns of larger size. To prove the ac-
ceptance of the inferred grammar by other non-
training sample patterns, a set of test data should
be used. The success of this final step should
prove that the spatial relationships among data
samples of a particular class can be utilized in a
broad sense.

IV. EXPERIMENTAL RESULTS

In the actual implementation of the above
procedures, we first choose the LANDSAT imagery
map of Lafayette, Indiana as the training data
set. The original 17 clusters are further com-
bined into seven ground cover types. They are
general agriculture area, pasture with wheat
dominant, forests, commercial area, residential
area, highways and rivers. Among them, rivers and
highways could serve as excellent examples for
Syntactic pattern recognition because of their
simple shapes and the relative failures of sta-
tistical approaches. Our purpose would be to
séparate the lake or pond from the river and
highway from any spectral similar features.
Although we might expect that highways are usually
built as a straight connection between two lo-
cations, in reality this is not true. The
highways are built as straight lines only locally,
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but not globaly, in order to avoid the fatigue of
the drivers. However, highways occasionally curve
locally for directional changes when some natural
obstacles such as rapid elevations occur. As a
result, certain geometric requirements of a highway
must be satisfied:

1. The width of a highway has an upperbound.
2. The local curvature of a highway has an
upperbound to follow the requirement of maximal

speed of automobiles.

The river, on the other hand, has a less rigid
upperbound than highway in terms of .-local curvature.

In other words, the river could make a sharper turn.

In general, we can expect the river to exhibit the
same linear pattern as the highway does. A small
creek branching out from a river can be inter-
preted as the entrance or the exit road from the
superhighway. For simplicity, we shall not write
separate grammars for rivers and highways in our
present study.

The Towest level or the primitives selected
for both river and highway are based on a 2 X 2
pixel window of the following patterns:

N /1 53
= L

In short, this first-level extraction will elimi-
nate all isolated points. Its main purpose,
however, is to generate the terminals for further
learning. The next step is to find the most proba-
ble combinations of primitives which occur as
neighbors of each other in the river and highway
data samples. For the sake of convenience, we
choose a set of L-tuple patterns which are more
representative of suburban highways than, say,
streets in commercial areas or any other features
which reflect like a mixture of concrete and grass,
like those appearing quite extensively in the new

residential area in south Lafayette. Those L-tuple
patterns are shown in Figure 2.

After a series of trials and errors, we deduce
a set of 26 combinations which give us a good re-
sult in terms of showing the Wabash River and
Interstate Highway 65 in the Lafayette area. The
ground truth in this case is provided by an infrared
photography of the Lafayette area. The pointwise
classified data of the Lafayette area is shown in
Figure 3. The result from the syntactic method
with selected pattern combinations is shown in
Figure 4 for both highways and river. Since the
b-tuples can be applied in both directions, we
really learn the highway and river structures from
the 13 combinations shown in Figure 5.




It is possible for us to go one level further
but these 13 patterns are probably sufficient for
us to infer a tree grammar based on their structural
information. Five of them are just straight lines,
meaning no directional changes. The other eight
have directional changes of no more than 45 degrees.
It is true that these patterns only represent a
segment of the highway and the river structures but
their repetitive natures are certainly valid in the
general context. Thus, we have completed the step
(1) of the inference procedures.

The next step is to discover what subtrees
make up the tree language and generate nonterminals
for each subtree. We can divide those 13 patterns
into three categories; they are shown as the
three rows in Figure 5. If we denote
a »+ (horizontal line segment), b ¥ (diagonal line
segment), and ¢ + (vertical Tine segment), then the
tree representation of the following superhighway
pattern

will be

$
I

N
AN
|

c
l
c
l
c b a

The subtrees of depth one within this tree can be
expressed in terms of the following representation

AN

VN
A
VLY.

i
1

where the repetitive substructures (RSS) for the
sublanguage are
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b c

t, = $ t, =, ty =

l!” c/\b’ (I:

t, = R =P t, =2
4 . 5 . 6 ¥

AN ;

Continuing in this fashion and following the
flow chart in Figure 1, we obtain the following
tree grammar for highway (or river) patterns:

Gt = (V, v, P, s)

V= {5’ a, b, c, $’ A]v sz A3’ Al*’ AS’ A6}
Vp = {a, b, c}

v(a) = {2, 1, 0}, y(b) = {2, 1, O}, Y(c) =
{2, 1, 0}

v($) = {2, 1}

P: S-#§ s >4 s >4
/' \ /7 \ 7/ \
A] A2 A2 A3 A] A3
s> % s+ s~ 4
| | i
A Ay 3
a a
Ay \ AL A
KA Ay Ag
y s
b b b
A A, > A, >
2/ \ 2 /\ 2/ \
Ay Ag As A A, Ag
b b
A Ay ™| A2
Al; A5 A6
(o4 Cc
A3/\ A3 l A3'*|
A A AS A6
5 6
Ah + a, AS + b, A6 +>c




Corresponding to this tree grammar, we can state we conclude that this particular picture does
then construct a tree automaton not have what we are looking for.
Mt = {Q» f$, fa’ fb’ fc’ F) over \!T The tree automaton s tested on a new data set,

that of Grand Rapids, Michigan. The total number
of pixels being studied are about 57940, half of
them mainly in the suburb, the other half mainly

in the inner city. However, due to its poor re-

VT = {$, a, b, c} solution highway data has to be preprocessed using
a local region expansion algorithm. In other words,
a proper preprocessing algorithm can connect up
those missing points in the data set which are due

Q= {A], Ay A3, Ay As, Ag» qF}, F = {qF},

f$ (Al’ AZ) = 9 to inadequate reflections of highway surfaces whose ‘
ground covers are only a fraction of the pixel size 1
f$ (AZ’ A3) = q¢ (~79 X 56 m2). The method of preprocessing as i
employed is illustrated in Figure 6. This process i
f, (A, A)) =g essentially has the effect of lengthening and i
$ 1 T3 F thicking the data samples. i
f$ (A]) = qc The results on Grand Rapids, Michigan show that L
with appropriate preprocessing the highways in I
f, (A) =g suburban areas can be detected as a road-like v
$ 2 F feature. In urban areas, there are too many streets I
and concrete parking lots confused as highways, I
f$ (A3) = ag On the other hand, the river, which is usually i
easier to find due to good resolution, is not so ik
£ (A, A) = A obvious In the lower portion of the urban-area data i
a "4 g i set due to the confusion with the shadow class. i
However, these rivers have been successively traced {
f, (Ak) = A, out in our syntactic approach. Figures 7, 8, 9, |
and 10 give the pointwise classification and the |
£ (A) =A syntactic interpretation of highways and rivers @
a 1 1 respectively in the Grand Rapids area. !
i
o= i
fy (A Ag) = Ay V. CONCLUDING REMARKS !
i
: £ (A, A) = A There are some observations that we have ob- 4
: b 5 76 2 tained from these experiments on LANDSAT data:
EA
: fb (Ah’ A6) = A2 1. Syntactic approach, and specifically the tree
system approach here, can be very useful in picture
fO(A) = A recognition by analyzing the geometric patterns of
b ‘4 2 _ the classes under investigation.
fy (AS) = A, 2. The spatial patterns of rivers and highways can
be described by tree grammars.
fb (A6) N AZ 3. The analysis of tree languages by tree automata
is a simple and efficient procedure compared with
fe (AS’ A6) = Ay other high-dimensional languages.
f (A) =A 4, Preprocessing can be very helpful in handling
c 5 3 -the resolution problem when the continuity of the
feature is very important.
fo(Ag) = Ay
More extensive tests on real data are certainly
f =A needed to justify the complete effectiveness and
a b efficiency of the proposed tree system approach for
LANDSAT data interpretation,
f b = A5
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Find all sample trees a.
)

Find repetitive subtrees (RSS)
from each wt,
i

Represent the tree (¢, by subtree
t; (include RSS) with depth

one

Obtain expansive production rules
for each subtree t,
i

Construct the tree grammar

(expansive) Gy for each tree o,
. 1
i

Form the total grammar

G = G
t (li

Figure 1.

Flow Chart for Tree Grammar inference
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Figure 3 Pointwise Classification of LANDSAT
' I Data of the Lafayette Area
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I
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I
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Figure 4  Syntactic Interpretation of Highway
and River Patterns in the Lafayette Area
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Figure 5 Basic (First Level) Michway Patterns
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0 ® point of reference pixel with sample a

O point at one pixel distance away with

O| X X110 sample a ;

X X X X points patched up by adding sample a to
this pixel point if 0 and o's relationship

is established.

Ficure 6 Preprocessing h

I
1

-ihilib,

Syntactic Interpretation of River and
Highway Patterns in the Suburban Area
of Grand Rapids

Pointwise Classification of LANDSAT Figure 9

Figure 7
Data of a Suburban Area in Grand Rapids

Syntactic Interpretation of River
Patterns in the Urban Area of Grand

Rapids

Figure 10

Pointwise Classification of LANDSAT

Figure 8
Data of an Urban Area in Grand Rapids
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