Reprinted from # Symposium on Machine Processing of Remotely Sensed Data June 29 - July 1, 1976 The Laboratory for Applications of Remote Sensing Purdue University West Lafayette Indiana IEEE Catalog No. 76CH1103-1 MPRSD Copyright © 1976 IEEE The Institute of Electrical and Electronics Engineers, Inc. Copyright © 2004 IEEE. This material is provided with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the products or services of the Purdue Research Foundation/University. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it. DIGITAL IMAGE PROCESSING OF LANDSAT I MSS DATA SPECIFICALLY DESIGNED FOR LINEAR ENHANCEMENT IN SOUTHWESTERN JORDAN Pat S. Chavez, Jr. G. Lennis Berlin Alex V. Acosta U. S. Geological Survey Flagstaff, Arizona #### **ABSTRACT** This study was designed to take LAND-SAT-1 multispectral scanner digital data and use digital image processing techniques to highlight linears. Two computer processing techniques were used on the data: (1) two dimensional high-pass filtering of MSS bands 5, 6, and 7 and (2) the horizontal derivative of MSS band 6. The primary objective of this research was to evaluate structural reconnaissance of an arid area in southwestern Jordan. Interpretive analyses indicate that the structural pattern appears to be much more detailed and complex than indicated by presently available maps. The types of lines that were identifiable as lineaments include faults, joints, fractures, topographic crests, lithologic contacts, bedding traces and flexures. A noticeable difference between published maps and maps from the highpass filtered images is the number of long lineaments that have never been mapped as faults. High-pass filtered images displayed the largest linears in various lithologies. The horizontal derivative image proved to be an excellent data source for obtaining a perspective for the structural fabric. ## LINEAR ATMOSPHERIC TRANSFORM ON LANDSAT MEASUREMENTS Richard K. Kiang GTE Information Systems Goddard Institute for Space Studies New York, N.Y. 10025 William E. Collins Goddard Institute for Space Studies New York, N.Y. 10025 #### ABSTRACT A problem exists when applying a set of ground training signatures determined under one atmospheric condition to the same area under another atmospheric condition. Sometimes the training signatures need to be adapted to the atmospheric condition of the subject area before classification. Other times the radiance measurements of an area with variable atmospheric conditions need to be adjusted to a common atmospheric condition before classification. In order to describe the effects of the atmosphere on the ground-reflected radiance measured by the LANDSAT-1 satellite, a radiative transfer model was developed. The model is a combination of a doubling model, which describes the effects of molecular and aerosol scattering in the atmosphere, and a scaling-approximation absorption model which takes into account the gaseous absorption due to oxygen, ozone and water vapor in the LANDSAT-1 spectral region. The model indicates that atmospheric effects can be approximted by linear transforms. The transform shows that the atmosphere always degredes the albedo difference but not necessarily the color difference. Signature transformations of Lambertian surfaces due to changes in the atmospheric condition can be determined.