CORRECTING LANDSAT DATA FOR CHANGES IN SUN ANGLE, HAZE LEVEL, AND BACKGROUND REFLECTANCE

J. P. Potter
Lockheed Electronics Company, Inc. ¹
Aerospace Systems Division
Houston, Texas 77058

ABSTRACT

This paper describes a computer program, called ATCOR, which is used to correct signatures obtained from LANDSAT data for differences in sun angle, haze level, and background reflectance.

A set of pre-computed tables is used in the calculations. These tables give the response of the LANDSAT multispectral scanner in each channel as a function of the solar zenith angle, θ, the atmospheric haze level, τ, the target reflectance, R, and the average background reflectance R_B. The tables also provide coefficients a and b such that for fixed, θ, τ, and R, the sensor response in a particular channel is given by

$$C = aR + b.$$

The minimum value method to determine τ and R_B is determined by averaging over the data. Appropriate a and b coefficients are then looked up in the tables. In most applications the signatures from a given segment (the training segment) are corrected to correspond to the same values of θ, τ, and R, as some other segment. This is done by determining the a and b coefficients for each segment independently. From these coefficients the transformation is determined which corrects the training segment statistics.

1The material of this paper was developed under NASA Contract NAS 9-12200 and prepared for the Earth Observations Division, NASA/JSC. Houston, Texas.