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AN APPROACH TO THE DESIGN OF

+

A LINEAR BINARY TREE CLASSIFIER

K. €. You and K. S. Fu

- School of Electrical Engineering
Purdue University

West Lafayette, Indiana

ABSTRACT

The overall performance of a multi-stage de-
cision-tree classifier has been shown to be better
than that of the conventional single-stage classi-
fier with the same number of features because
different feature subsets can be selected at
different stages. But, the classification time
increases due to the complexity of computation.

The linear binary tree classifier designed by the
method proposed in this study takes the advantages
of the accuracy of a decision-tree classifier and
uses linear discriminant functions at decision
stages to reduce the classification time. An appli-
cation of this method to the multispectral remotely
sensed data is presented. All ten classes under
consideration are assumed to be gaussian distri-
buted. The result from a test on about 7000
samples shows that the linear binary tree classi-
fier is more accurate and much faster than the
maximum-1ikelihood classifier with the same number
of features.,

I. INTRODUCTION

Most literature of pattern recognition deals
with single-stage classifiers and different types
of discriminant function.’” The conventional ap-
proach to multivariate and multiclass classifi-
cation would be to perform tests on the unknown
pattern against all classes using a particular
feature subset and then assign the unknown to one
of these classes. On the other hand, the decision-
tree classifier assigns the unknown through a de-
cision~tree procedure, which leads an unknown to a
terminal node by serial stages of decision. That
terminal node tells to which class the unknown is
assigned.

We say that a tree classifier is binary, if
and only if each nonterminal node in the decision
tree has two subtrees. In other words, there are
only two possible outcomes at each stage of de-
cision. A binary tree classifier uses only one
discriminant function f{X), at each stage of de-
cision. If the unknown falls in the region where
f(X)<0, a decision is made to go through one
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subtree; if it falls in the other region where
f(X)20, a decision is made to go through the
other subtree, until a terminal node is reached.

A linear decision-tree classifier is a tree
classifier of which all the decision rules can be
mathematically expressed by linear functions. The
tree classifier designed by this method is linear
as well as binary.

The tree classifier takes advantage of using
different feature subsets at different stages in
contrast to the conventional single-stage classi-
fier which uses only one fixed featurg subset. It
has been reported by Hauska and Swain that the
overall performance of a decision-tree classifier
is better than that of the conventional classifier,
but the classification time increases due to com-
plexity of computation, '

From the tree structure viewpoint., the con-
ventional classifier can be expressed by Figure 1
as a single-stage classifier which uses only one
particular feature subset. |f each comparison is
considered as a decision making, it can also be
expressed by Figure 2 as a muitistage classifier
which can use different feature subsets at differ-
ent stages., |If different feature subsets are se-
lected at different decision stages, the accuracy
might be improved by proper selections, but the
classification time will be long, because the pro-
bability distribution or density functions corre-
sponding to different feature subsets for each
class have to be calculated at different stages.

The structure of Figure 2 shows that m-1
decisions are necessary for classifying intom
classes. And it is easily seen that there is only
one non-over]ap*class in the two next nodes of each
decision stage; in other words, the information ob-
tained in one decision stage is that the unknown
does not belong to one particular class. If the
number of overlap classes can be minimized, then
the number of decisions for each class will be re-
duced, and the classification time will be reduced
as well. So, the goal of constructing an efficient

If two nonterminal nodes contain the same classes,
then it is said that they have some overlap classes,



tree classifier is to find a tree, of which each
nonterminal node has a minimum number of overlap
classes in its next level nodes under some error
bound. For example, Figure 3 has no overlap in

the same level nodes, and the expected number of
decisions is less than m=1. The expected number of
decisions is calculated by the summation of the
number of decisions for each class times the proba-
bility of that class. In the observation space,
classifiers can be expressed in terms of discrimi-
nant functions. In non-parametric cases, the
discriminant function can be obtained usually by

an iterative method.

Figure 4 and 5 show the 2-dimensional feature
spaces of Figure 2 and 3 respectively, where the
same feature subset selections and linear classi-
fiers are provided. i

In practical application, the distribution
function of each class is usually unknown. A
proper assumption of the form of distribution
function is very important for deriving a good
classifier. Fortunhately, the assumption of multi-
variate gaussian distribution for each class is
often reasonable in remote sensing problems.

Because of the linearity of the discriminant
functions, the tree classifier constructed by this
method is expected to be fast in classification
time, though it might have some drawback in accu-
racy in comparison with a single-stage maximum=-
likelihood classifier with full features, because,
in general, the discriminant functgqp derived ac-
cording to the Neyman-Pearson test °is not neces-
sarily linear. Any discriminant function other
than that from Neyman-Pearson test will have this
disadvantage. But the loss in accuracy may be more
or less compensated by the allowance of overlap and
the different selections of feature subsets at
different stages.

To store the data for a L-feature m-class
gaussian distributed maximum-likelihood classifier,
m{L+1) (L+2)/2, or m(L4+3L+2)/2 memory locations
are needed, since the covariance matrices are sym-
metric. But only about (m-1)(2L+3) memory lo-
cations are necessary for storing a linear binary
tree classifier. For m classes, if there is no
overlap class after each stage of classification,
the number of nodes in a tree is m-1, while there
are 2 pointers, L feature indicators, L coef-
ficients and one constant for each node. In case
of 10 features and 30 classes, the comparison of
memory locations will be 1980 to 667. Another
advantage of a linear binary tree classifier is the
simplicity of implementation in both hardware and
software.

2. A SUB-OPTIMAL LINEAR
BINARY TREE CLASSIFIER

For an n-feature m-class problem, the total
Rumber of possible trees N is roughly equal to
) 2R*M, where K is the number of different node
|=

structures, and m; is the number of nonterminal
nodes in the i-th node structure. Though K and m,
are not determined in the above expression, it is
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obvious that the total number N is very large. |p
order to reduce the number of possible trees to
some extent, such that they can be searched through
for a good one, the first restriction suggested is
limiting the number of features selected at each
stage. |f the number of features in a classifier
is limited to L, the feature subsets of size less
than L will not be considered not only because of
accuracy, but also because of uniformity of the,
classifier. The destruction of uniformity will’
make the classifier more difficult to implement and
will increase the design and classification time.

For the sake of accuracy, the second re-
striction is the size of the tolerable error proba-
bility at each stage. In order to reduce the
number of overlap classes in the next level nodes
of each stage of classification, some classes might
have fairly large misclassification region in the
feature space, or they might have pretty large
error probabilities. An example is shown in Figure
6. If ten classes are considered and a linear
classifier is desired between two nonoverlap groups
of classes. They are group of classes 1, 2, 5, 8
and group of classes 3, 4, 6, 7, 9, 10. The best
linear decision boundary may be F1 as shown, and
this decision stage is shown in Figure 7. But
classes 3, 4, 8 have high error probabilities. |If
the total error probability Is higher than some
error bound, the classifier may be useless no
matter how fast the classification time is. The
policy of dealing with this situation is to take
the class, which has the largest error probability,
out of consideration and let it overlap in the next
level nodes, and then find the classifier again.

In the last example, class 8 is taken out of con-
sideration and then the linear decision boundary
found will be F2, and the decision stage will
change to that in Figure 8. It is obvious that the
misclassification probability is lowered. I|f the
number of classes under consideration is only two,
that means we cannot do better, then let it stay.

To look for a tree, which has higher accuracy,
a larger limit on the number of features and a
lower error bound should be specified as parameters
at the beginning of the design process.

For a decision stage, at which a linear
classifier is being found, there are (') possible
feature subsets under the limitation of L features
out of n total features. Suppose that the stage
has p classes under consideration, there are 2P™1 -1
possible ways of grouping, which consists of two
groups of classes. Because each class can be
assigned to either one of the two groups, and the
grouping with all classes in one group is meaning-
less, the total number of possible combinatiog? of
feature subset and grouping is therefore ( 2P7 -1 )
(E). But we need only one of them. An algorithm
is_?ecessary to select one good grouping among
2P -1, so that the number of varieties to be
searched can be reduced to (E). Besides, a
function is necessary for evaluating the separa-
bility of the two groups obtained from the above
algorithm. Upon the separabilities calculated
from this function, a good feature subset and a
grouping are selected,




It is obvious that a classifier which commits
the minimum error will reflect a good performance.
So, after a feature subset and a grouping are se-
lected, a function is needed to calculate the error
committed by the classifier. The process to find a
classifier which has minimum error will somehow
become an iterative procedure starting with an
initial guess. The convergence of the iterative
procedure is related closely to the initial guess
and the error calculation function. 1f the error
calculation function is first order differentiable
with respect to the coefficients of the linear e-
quation of classifier, the Fletcher-Powell algo-
rithm is recommended.’

The initial guess of the classifier depends on
the grouping selected. However, the classifier
corresponding to the minimum error may not be able
to separate the two groups of classes in the origi-
nal grouping because the grouping algorithm may not
work as well as it is expected. Hence, the classes
considered have to be regrouped by the classifier
obtained. Since the classifier divides the space
ﬂ into two regions, the classes are assigned to the
same group if their means are in the same region,
such that they are regrouped into two groups.

After the classifier and the associated
grouping have been obtained, the error commitment
of this classifier is checked by the error bound,
If the error commitment is too high, take one class
off and find a new classifier. |If the error is
fower than the error bound, build up the tree; that
is, create two nodes for the two groups obtained
from regrouping and link them to the node whose
classes are grouped. And then check the tree to
see whether every terminal node contains only one
class or not. If yes, the tree is completed and
the process terminates. |f not, apply the classi-
fier design process to cne node which needs further
operation. A flow chart is shown in Figure 9.

3. LINEAR BINARY TREE CLASSIFIER FOR
MULTIVARIATE GAUSSIAN MULTICLASS CASE

Before getting into the description of the
method, two lemmas are stated.

Lemma |

A hyperplane BTX + C =0 is tangent to an
equiprobability surface of Gaussian distribution,
with mean M and covariance I, at point X,, and X
has conditional probability Pr(X,|w) = Exp(K/2),

where T
_é+(an+c)
B8

2
= )
So= In |E] + neln(2m)

B,X,M are (n x 1) vecters, Zis an (n x n) matrix,
C and So are constants, and T indicates transpose.

It can be proved by finding the maximum
probability point on the hyperplane.

1 Suppose that a linear decision surface

B' X+ C =0 is tangent to the equiprobability
surface of class w, at point Xi which has

3A-3

conditional probability Pr( Xilwi ) = Exp(Ki/Z),

T 2 .
where K. == ln(Zw)nIZil - [8 Mo+ c] How is the
B'E, 8B
error probability calculated? ' The next lemma will
show it. :
Lemma 2

The error committed by a linear classifier on
a gaussian distributed class w, is % +

3 erf(V'iSoi + Ki572 ), where the error function
erf( x(/i-) i% defined as erf( x/vZ ) =
x -

f J;;Exp-z— dt.
=X
Proof:

Let us rewrite the two equations from lemma 1
for class W,

[BTMi + C]2 + Soi +K =0

BTZiB
aTxi +C=0

A two dimensional case is illustrated in
Figure 10.

The distance between linear classifier and the
mean is |M.Q.{, and
i~i 3

T
| = [—(50i +K) B'LB

Suppose that the variance of class w,
direction of the linear classifier is oty

o =
|

'8

in the

BTZiB

BTB

It is known that the error probability com-
mitted by BTX + C = 0 on class Wi is Ei » where

BIX +C =0
Pr{X|w;)dX or Pr(XIwi)dX

(o]
]
"t
BIX + C =0

-0

it depends on which side of the space of X s

claimed to be the region of class Wi

Refer to Figure 10. If left side of BTX +
C =0 is claimed to be the region of class W the

error will be the region from T; to =, while Mi is

projected onto zero point. Thus
2
A Exp Y|4 t;
B, = | vzm o, 202
i

T,
i




= %[__J - erf(_T_i_ //2—)3
o,

i
=% =1 erf[»’-iSoi T Ki$72]

I f the other side of the space is claimed to be the
region of this class, then the error will be

=4+ % erf[‘/-ZSoi + Kij/Z]
This situation should be avoided.

The overall performance of the classifier
depends on the total error commitment of all
classes to be classified at each stage instead of
that of a single class., What is to be minimized
should be the average error ET.

=7 Pr(wi)Ei

(A11 the classes under consideration)

The procedure of design of the linear binary tree
classifier is described as follows:

(A) Grouping Algorithm

With the previous two lemmas, the error com-
mitment of a linear classifier at all stages can
be calculated.  Besides error calculation, one more
algorithm is needed to group the classes under con-
sideration into two groups with respect to each
feature subset. And it is assumed that the
grouping algorithm will produce two groups with
pretty high linear separability among the 2P7'-1
possibilities, while p classes are under con-
sideration. Figure 11 is the flow chart of the
grouping algorithm we used.

(B) Separability Measurement

Through the grouping algorithm, the classes
will be grouped in different ways with respect to
different feature subsets. In order to choose a
proper one among them, a measurement is needed to
evaluate their respective separabilities.
Bhattacharyya distance” between two gaussian dis-
tributed classes can be expressed as :

B»= Bm + Bv
Bn = ¢ (M, -M)Tf__:_zg) (M, = M)
By = 3 1n {52 *ZzylZl 17,1%

where Bm is due to the different of means and Bv

is due to covariances. Since we are looking for

a linear classifier, Bm is more significant than
Bv. So, Bm is introduced to the method as a
measurement of linear separability between classes.

The linear separability between two groups of
classes is estimated by the summation of Bm's of
all possible pair of classes between two groups
resulting from the grouping algorithm. Among the

(n) possible combinations of grouping result and
feéature subset, the one which has the highest
separability is chosen.
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(C) Error Minimization Procedure

With some initial guess, the Fletcher-Powell
algorithm is performed to get the classifier corre-
sponding to the minimum value of error. The
details of implementation of this part are given ip
the Appendix.

(D) Error Bound Checking and Regrouping

%

In concerning with the accuracy in performance,
the error commitment of the classifier obtained
from the procedure (C) is checked with the error
bound as described in Section 2. If the error is
higher than the error bound, the class whic: has
the largest error probability will be taken out of
consideration and will be in both groups after the
classifier is found. |f it is lower than the error
bound, the classes under consideration have to be +=
regrouped by the classifier obtained, as described o
in Section 2,

After the linear classifier and the associated
regrouping have been obtained, as described in -
Section 2, the binary tree is updated and checked d
to see whether it is completed or not. If yes, the
design process terminates; if not, the node design
process is applied to the next node of which a
linear classifier is to be found. A flow chart for
the overall design procedure is given in Figure 12,

L, COMPUTATIONAL RESULTS AND REMARKS

The method has been applied to the pattern
recognition problem of remotely sensed data of
twelve spectral bands and ten classes (see Table 1),
A1l computations were carried out on CDC 6500 at
the Purdue Computing Center. All ten classes are
assumed to be multivariate gaussian distributed.

In order to obtain information about prior
probability of each class, training samples are
selected periodically throughout the whole data
set, and the prior probability is calculated by the
ratio of number of samples from a particular class
to the whole training sample size. Means and
covariances of each class are calculated according
to the sample mean and sample variancel. If the
losses of misclassification of all classes are
assumed to be equal, it has been proved that the
Bayes decision rule with respect to some prior
distribution is the maximum-1ikelihood decision

7.
rule, i.e., the unknown X is assigned to class w.,
if Pr( w, )Pr( X[w ) 2Pr (w, )ePr( X|w, ), for
j= 1,..l,m. J J

If the assumption of gaussian distribution is
correct, and training samples are adequate, the
highest accuracy which can be found will be that of
maximum~1ikelihood test using full feature size;
that is, twelve.

In Table 2, the training sample set and
testing sample set do not contain any common sample.
The 94.48% accuracy of performance of maximum-
likelihood classifier with twelve features indi-
cates that the assumption of gaussian distribution
appears to be a good approximation of the true
distribution. The linear binary tree classifier




with one or two features at each stage is much
better in performance and is about twelve times
faster in classification speed than the con-
ventional single stage maximum-likelihood classi-
fier with the same number of features, although it
takes about one minute to design the tree.

The linear binary trees of 1, 2, and 3
features are shown on Figure 13, 14, and 15. It
is seen that features 1, 3, 5, and 7 have never
been selected in Figure 13; features 1, 6 have
never appeared in Figure 14, and features 1, 3, 5
have never shown up in Figure 15.

Although the minimization of error commitment
is emphasized in finding the linear classifier for
the purpose of accuracy, the balance of the tree is
also important in reducing the average classifi-
cation time. Figure 13 is not balanced, but Figure
14 is better and is two levels less than Figure 13.
The only difference in prespecification of the
design is the number of features.

Suppose that a tree classifier has M non-
terminal nodes, each nonterminal node has proba-
bitity Pr{ N, } and conditional error probability
E( N, ). Theé total error commitment of the tree
classifier is less or equal to M

LPrON, ) ECN ),

i=1
because misclassification regions of different
stages may be partially overlapped. 1f the total
error of the classifier has to be under a certain
bound, a dynamic bound is suggested instead of the
prespecified fixed error bound for all stages. For
example, if we are dealing with the k-th non-
terminal node and we have p more nonterminal nodes
to do, the error bound for the current stage can be
calculated by a function,

k-1
[ET - § EB(D)],
i=1

1
EB(k) = —

(k) 5
where ET is the preset total error bound for the
classifier.

Since the grouping algorithm employed may not
work as well as desired, and the linear separa-
bility measurement used may not provide the true
linear separabilities, they could be improved by
selecting more appropriate grouping and feature
subset, and a better result could consequently be
obtained. Furthermore, the backtracking techniques
could be introduced to attain the capability of
looking ahead in designing the sub-optimal tree.

APPENDIX

A Brief Description of Fletcher-Powell Algo-
rithm and lts Application to This Case.

The idea of the Fletcher-Powell Algorithm can
be briefly described as follows:
' Problem: Find an X = ( Xps Xosener X ) to
minimize E(X) = E( Xps Xgpeses X

Iterative Method: Start with an initial guess

3(0) and proceed iteratively until a local minimum
s reached.
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() A, !
|

where D, = - H. G,
i i-1

]
min e(x() AD.)

ki =
A
9E , 9E ,. JE .
6, = (3£, E .28 (1)
i (Bx] 3x2 an)lx = X
T T
Weo=n, o+ 000 =YY M
i i-1 i T T
G, H, .G, Y., H. ,Y
ioi-1Td i i-1i
Yi=Ga "G

H. can be any positive definite matrix; for
examplé, the unit matrix. The reader may refer ?

for details of this algorithm,

To apply this algorithm to our case, the
derivatives of ET have to be determined. From
temma 2,

Er =1 Pr(w) [} - & erf(/~(50; + K)/2)]

where -(Soi + Ki) = [BTMi + C]2

BTZiB

For the purpose of keeping the classifier in
the region between two centers, Ul and U2, of the
grouping, let it pass through some point G between
Ul and U2, .
+C=0

Sino « Ul + Cos28 * U2,

[
3
o
o
i

50 C =~ B'[Sin20 * Ul + Cos26 * U2].

The derivatives of Er with respect to B =
( bys bysesesby ), and 6 are as following equations.

%€, %,
35 = LPriv)

3E. T
=W - BN O T e
B it — i

8'z,8
3E . 3E,
LI —
3= LPriw) g5
3,

- wi[BT(uz - U1)1sin(26)

1
=1 So, e T
where W = 5= [Exp(_l__;-_f_i)] o) (B7M; + ]

BTMiB
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(]’ 2, 3, h’ 5, 63 7, 8’ 91 ]0)

F2

(a, 2,5, 8 (3, 4, 6, 7, 9, 10, 8)

Figure 8

Set feature limit L
and error bound EB

For each feature subset, qroup the
classes, measure the separability,
then search for one which has highest

separability.

Make an initial guess of classifier,

call minimization procedure to find

a best classifier,

T?k°.°"? o, of classes
class off is 27
Figure 6
Updaté tree.
(]’ 2! 3! h’ 5’ 6’ 7, 8’ 9’ ]O)
H Pick a proper
4 F1 !s tree complete nonterminal node
G, 2, 5, 8) (3, 4, 6, 7, 9, 10)
! Figure 7 Figure 9
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BTX +C=0

1. Set feature size limit L
and error bound.

2. Generate al) ('L‘) possible
feature subsets.

1. Get a feature subset
2. Group the classes
3. Measure the Separability

Choose a subset which has the largest :
separability
P |
i ]

Make an initial guess of classifier and call 4

Fletcher-Powell algorithm to obtain the minimum

error classifier

—p
'v
Get a proper
Take off th ) nonterminal
s 0 ake off the class node
Flgure ! which has the largest
~error
1. Regrouping
there only 2 2. Update tree
no classes
Calculate the whole
sample mean V.

Set up centers Ul and U2
of the two groups ' Figure 12

Ciass Type of Ground Coverage
Are
all classes 1 Corn
assigned 2 Soybeans
3 Hay
L Oats
Pick among the remaining classes the one 5 Non=-Farm
whose mean is farthest f
e me est away from W and 6 Woods
assign it to the group whose center is
closer to it. 7 Wheat
8 Pasture
) g Sudex
Update the center by 10 Set-Aside
sample mean idea
Figure 11 Table 1
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i1
Classifier No, of Features Accuracy $§:‘:s;:1c;:;‘3?e ' Tree Design Time ‘:’
it
M.L.C. 12 94,48 % 3.74x107% sec. o it
M.L.C. Best ! 60.87 % ‘o.39xl0-3 sec,
L.B.T.C. v 75.68 % 2.75x107™" sec. 4.k sec.
M.L.C. Best 2 77.99 % 5.34x10"3 sec.
L.B.T.C. 2 82.82 % 5.05x10™" sec. 51.2 sec.
M.L.C. Best 3 83.95 % 6.81x1077 sec.
L.B.T.C. 3 83.08 % 5.34x10™" sec. 74.3 sec.

No. of Classes 10 I

i
Training Samples 7906 Testing Samples 7288 il
Table 2
(12345678910)
[e]

(29) (135678104) ;|

i

[4] /‘N

(9) (1347810) (56) 113

lO] 2

(347810) e e

ﬂN

(7810) (34)

‘ Am e ®

Figure 13. Tree structure with limit of 1 feature.

{ ) Nonterminal node

O Terminal node

[ ] Feature subset selected
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(12345678910)

[+9]
(78910) (123456)
/;\ /m
(7810) (156) (234)

=3

I g

Ae) (56) (34/)\2}
./(\.

Figure 1k, Tree Structure with
Limit of 2 Features.

(12345678910)
m
(7810) (1234569)

79 10] /@\
(78) (29) (13456)

7912 |on m
(56) (134)

2 112

fa 7

(5) (8) (34)

[49|o %)

Figure 15, Tree Structure with Limit of 3 Features.
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