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MACHINE ESTIMATION OF TIMBER VOLUMES FOR USE IN SAMPLING SURVEYS

A Method for High Flight and Space Imagery,
Interface Considerations, and Results

Jan W. van Roessel

Earth Satellite Corporation, Berkeley, California

I. ABSTRACT

The digital timber volume estimation method
was developed primarily for use with Landsat MSS
scanner data. The technique makes use of a vector
field clustering algorithm, nearest neighbor classi-
fication, and regression analysis. When such a
technique is to be applied to reduce the cost for a
given level of precision in a forest inventory, the
interface between sampling methods and the digital
estimation model must be considered. The candidate
models and sampling methods must be evaluated using
test data as closely related to actual circumstances
as possible.

II. INTRODUCTION AND OBJECTIVES

This paper describes results of a Landsat
investigation! concerning development of a multi-
stage forest inventory system. In such a system,
aerial and space platform imagery as well as ground
data can be used in a sampling framework through
which estimates of timber volumes are obtained.

The image interpretation models used in this
forestry context are quantitative rather than qual-
itative, unlike models used in disciplines such as
geology or agriculture. They are set apart by the
fact that the estimates need not approach a "99
percent" accuracy to be useful, as they are only
inserted as auxiliary data in a sampling survey for
the purpose of reducing the overall sampling effort
required to achieve a specified level of precision.

The quality of the interpretation model, there-
fore, should be dictated by overall survey economic
considerations, i.e., by finding answers to the
following complex question: What interpretation
models and techniques contribute most to the sam~
pling efficiency and at what cost, and what are the
appropriate sampling techniques and methods?

Considering the variety of interpretation
*methods, imagery types, instrumentation, as well as
the many different sampling techniques and the
manner in which they may be combined in a multi-
stage sample survey, it is not hard to grasp that
this question may remain unanswered for many years
to come, if not forever. Hence, the best one can

do is select an approach with which to experiment
and theorize in the realm of the possible.

III. TEST DATA
A. "Ground Truth"

We at EarthSat were fortunate to have available
for experimentation results of an extensive commer-
cial timber inventory conducted just before the
event of Landsat-1. The volume estimates of such
an inventory cannot be called ground truth, and in
the context of our study this term is actually mis-
leading, even though the estimates are partly based
on ground truth in the form of tree dendrometry.

Rather than comparing machine interpretations
with ground truth, we were interested in finding
out what can be gained in a forest inventory if
space imagery is included as the first level of the
first stage in a multistage forest inventory.

Thus, instead of ground truth, we were in need of
test populations for which the attributes one level
removed from the space level were known. The esti-
mates of the commercial survey satisfied this need
exceedingly well. In addition, we used two other
types of second level estimates: (1) volume esti-
mates obtained by human interpretation of U2 photo-
graphs, and (2) estimates obtained from logging
records and inventories conducted prior to the
EarthSat timber survey. We will refer to the dif-
ferent types of second level attributes as the ES,
U2, and SP volume estimates, respectively.

B. Test Site

From the area covered by the commercial survey,
we selected as our test site the mountainous ter-
rain of the Trinity Alps in California with eleva-
tions ranging from 2,000 to 8,000 feet. The timber
cover in this area consists of a mixture of red and
white fir, sugar and ponderosa pine, and douglas
fir, in proportions which vary with elevation.

Alternate square miles in a checkerboard pat-
tern are owned by the Southern Pacific Land Company
and the Federal Government. We selected these
square-mile "sections" {or fractions thereof) and
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their associated timber volumes as the basic unit
in our experiment.

C. Imagery

NASA provided us with MSS images in bands 5 and
7 of the test site as well as with computer compat-
ible tapes. In particular, we used frame E1094-
18224 of which band 7 has the appearance of a radar
image due to a low sun angle because of the late
fall date. We also obtained high flight 1:125,000
scale U2 color infrared photographs.

To locate our sections on the imagery, we
extended the previously developed 1:40,000 scale
precision image annotation system to the U2 photos.
Control for photo orientation and location was
obtained by executing a photogrammetric block
adjustment.

A special generalized precision annotation sys-
tem was developed for the Landsat images. A report
on this system and the accuracies obtained with it
can be found in van Roessel and Langley?.

The reason for exercising this much care to
locate the sections on the various types of imagery
was of course to prevent negative results which
could possibly arise from unintentional comparison
of different pieces of land on different types of
imagery. With our precision annotation techniques
there was no question of the correct piece of land
being interpreted.

IV. MACHINE ESTIMATION TECHNIQUE

In this paper we will concentrate on the
machine oriented timber volume estimation technique,
although we also experimented with human interpre-
tation models. The machine system consists of two
parts; namely, the training subsystem and the tim-
ber volume estimation subsystem

A. Training Subsystem

This paft is applied to training areas in which
timber volume estimates are available. The follow-
ing six major programs are used.

1. Feature Extraction. The Landsat CCT images
are blocked up into 8x8 pixel elements which are
called "intels." For each intel, one tone and one
contrast measure for each spatial band can be

. extracted. To compute these values we use a fast

Walsh transform algorithm. Final output of this
program is a list of 2xNxK features where N is the
number of channels used and K is the number of
intels.,

2. - Feature Modification and Display. With
this program, features may be combined in the form
of differences or ratios, and histograms and scat-
tered diagrams may be plotted.

3. Unsupervised Classification. We selected
G. A. Butler's® vector field approach for a clus-
tering algorithm to first perform unsupervised
classification. With this non-statistical method a

ngrayitational” field is generated in the n-dimen-
sional feature space by using the generalized
Newtonian formula, F = M1M25‘r where r is called
the "field strength." A gradient searching tech-
nique is used to Took for nodes or centers of zero
gravity in this vector field. These nodes are
representative of the cluster centers. This tech-
nique allows one's perspective of the data to range
from locally sensitive to globally sensitive by ,
just varying one parameter: the field strength.

A major variation on Butler's original
technique is that we use the "chain" a]gorithm“ to
thin out the feature space before c]uster1ng, there-
by reducing the large number of compgtat19ns that
must otherwise be made. The Tink points in the
chain are taken as points in the thinned feature
space, to which non-zero masses are as§1gned
according to the number of original points asso-
ciated with each link point. The same chain algo-
rithm is also used to define a small set of start-
ing points from which the gradient search for the
zero gravity centers 1s started.

4. Nearest Neighbor C]assification.~ After the
cluster centers are found, the intels can be_
classified according to thesclusters with wh1ch
they are associated. Roese’ has used a maxi mum
likelihood procedure assuming a multivariate normal
distribution for his clusters.

We do not make any distributive assumptions,
however, and use simple nearest neighbor classifi-
cation according to the Euclidean distance for each
of the unthinned points. Before classifying, the
n-dimensional feature space is standardized.

5. Class Area per Section Calculation. A
classification image in the form of 8x8 blocks of
class numbers corresponding to the original intels
is generated from the nearest neighbor results.
With the precision annotation system, section boun-
daries are then superimposed on this classification
image and the class symbols within each section are
tallied using an "in or out" algorithm. These
tally figures are converted into proportions of

classes per section.

6. Regression. Next, a regression is per-
formed in which the dependent variable is the
"known" timber volume for the section and the inde-
pendent variables are the class percentages. This
regression is based on the following model:

Vs - V= By Pij* By Poy*e ¥ ByPys gy (1)

where V is the timber volume per square mile for
parcel j, V is the average volume over all parcels,
pij is the class proportion of class i in parcel j,
and €5 is an error term. We call the beta's in
this model Differential Volume Levels. Note that,
although V is redundant, it is included in the
model so that the beta's will represent class dif-
ferences around a mean volume rather than absolute
volume figures. This is to facilitate statistical
testing of their significance.
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B. Timber Volume Estimation Subsystem

The main outputs from the training phase are
the cluster center coordinates and the differential
volume levels. These are the controlling para-
meters for the estimation process, in which
extracted features from the unknown area are entered
into the nearest neighbor classifier. The class
areas per section are then determined and they are
multiplied with the differential volume levels and
added to the mean volume to yield the estimate for
the section.

V. SAMPLING METHODS

As possible first-stage sampling methods in a
multistage design to receive the machine-produced
estimates as auxiliary data, we considered: (1)
variable probability sampling, (2) regression sam-
pling, and (3) stratified sampling with proportional
allocation.

As a measure of the decrease in variance {or
the gain in precision) due to the auxiliary data,
we adopted the formulation presented by Zarcovic®
in a slightly different form; namely, the variance
of the estimator for simple random sampling Vgypss
minus the variance of the estimator under con-
sideration, expressed as a percentage of Vsrs’

Using Zarkovic's expressions modified in this
manner, the percentage gain for each method is:

1. Variable probability sampling.

N
_ y.2

- X |
vps ~ In i (1 -‘)(i)xTOO% Nyps =+ (2)

i=1

where N is the total number of units in the popula-
tion, n is the sample size and Xi is the first level
auxiliary variable, and Yi is the second level
attribute.

2. Regression sampling.

- 2
AGreg = p- x 100% ... (3)

where p is the population correlation coefficient.

3. Stratified sampling.
: 2
z v .V
h=1 W, (Yh Y)© x 100%

ABgtpat = v 2 --(4)
y

where Wy (N /N) and Yy are the ﬁtratum proportions
and the strgtum mean for the h'N stratum of L
strata, respectively.

Using the existing volume estimates of the pre-
viously described test populations as second level
attributes (Y.'s) and the machine estimates as first
stage attribufes (Xi's), we were able to compute the

percentage gain criteria for each s#mpling method,
and thus evaluate the machine interpretation as
well as the sampling methods. R

VI. INTERFACE CONSIDERATIONS

One of our concerns was the interface between
sampling survey methods and interpretation models.
We asked ourselves the following questions:

1. 1Is the‘interpretation model statistically sig-
nificant?

2. If so, what does the model contribute to the
survey efficiency, and how can this contribution be
predicted?

3. What sampling method is most robust in coping
with training to application site deterioration?

To evaluate the statistical significance of

~. ~<our models, we used the following regression

statistics: (1) the multiple correlation coeffi-
cient; (2) an F statistic to test the hypothesis
that the differential volume levels B] =8, = Bi =
0; namely,

_ SS(R/bo)/(p-1) :
Fp—l;v 2 ...(5)
where SS(R/bo) is the sum of squares attributable
to p volume levels, s is the standard error of.
estimate, and v = N-p (Draper and Smith’, p. 64);
and (3) t statistics for the individual beta's to
test the significance of their difference from zero.

To evaluate the model contribution to survey
precision, we used the relative gain eriteria des-
cribed in the previous paragraph. We realized,
however, that the significant deterioration in per-
formance may occur when the model is applied to a
much larger area,-such as our testing area, which
may or may not include all or part of the original
training site.

Some insight into this deterioration was
obtained by formulating a theoretical mpdel con-
cerning variable probability sampling. This
sampling method has recently been applied in multi-
stage forest inventories with a space stage.®*®

Due to constraints in image processing and
availability of test data, selected test and
training sites cannot be considered random samples
from a population. Thus, one cannot assume any
functional distribution for the sample units which
comprise these sites. A way out of such a situa-
tion was suggested by Cochran'?; namely, the finite
training-test population is regarded as drawn at
random from a super population for which certain
properties are assumed. In our case this solution
was applied as follows:

1. The training-test siteAconbination is consid-
ered as drawn from a finite super population for
which we assume that the first lTevel auxiliary
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values are linearly related to the second level
population attributes: Yi =a+ in te, where we
assume that

2 - _y @
Va . E(b) = B8, Var(b) = Vb s

2
i

E(a) = a,Var(a) =

E(ei) = €5, Var(ei) = Vg

2. The super population of all training site com-
binations can in turn be considered as a sample
drawn from an infinite super population for which
we assume that

E(ei/xi) = 0, Var (ei/Xi) =y Xig

With these assumptions we can now derive an
expression for the expected value of the gain in
precision for variable probability sampling condi-
tional on the first super population.

2

€
E(G/sp])= NT (82+Vb2) sz +(a2+va2) cov (i], X'i)+ 2a cov (-X—:—,

The expected value of this expression, given
the properties for the second super population, is

as v is assumed positive.

Therefore, if the precision gain is computed
on the training site data, we can expect that the

variable probability gain will always be positive.
However, when the test population is not identical
to the training population, the gain will only be .
positive if

N
v, 2 g -
cov ( i X7, Xi) >(a +V 2)(%__§T_i¥ -1 -
X5 i
i v ‘
(32 + Vbz) Vx? .. (10)

From this expression we can see, for 1nstance, that
the larger the variation of the intercept V42, the
less 1ikely it is that this condition will hold.

The important conclusion is that, computed
from training site data, Gyps will always be posi-
tive, but as soon as the results are applied else-
where, degradation of the expected gain may occur,

X;)*2b cov (Ei’ Xi)+ cov (——;XT——, XTM

even to the point where the method with the auxil-
jary variable may be worse than simple random sam-

as follows: - pling. Whether this is also true for other sampling
2
v g
W [ g2 2,y 2 ] K
E(E(G/spl == ( (8 +V + (a +V, ) cov (7?, Xi) + cov (—————i;————, Xi) . (7)
If the test popu]at1on is confined to the methods in the context of this model rémains to be
training site, then Va2, V.2, Vej2 can be assumed investigated, but our experimental results indicate
zero, as_there is only one training site combina- that the variable probability sampling is especially
tion. Also, a = 0, since the model is restrained susceptible to this problem and is the least robust
to go through the origin for the entire test popu- of the methods investigated in this study, even
lation. though potential gains may be greater under favor-
L able conditions. ‘
Under these conditions (7) reduces to:
(e(orspr)) - 1 fg2 v 2 2% Yy K97, ¥ (8)
) = 5 x te N E X Ty v (T Ky
(An identical expression is found in Murthy!l.) VII. RESULTS
From this e¥prgssion it can be seen that the
expected gain is always positive, since A. Optimization of the Volume Estimation System
¥ cov (XTY-]’ X;) > -g% sz, .o (9) As our training areas we selected two contig-
uous blocks of 8x8-square-mile sections which were

located in a much larger 1,500-square-mile area
from which the test populations were selected. The
first training area contained a water body, whereas
the second area consisted of forested land only.
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To optimize the timber volume estimation
system in terms of the features extracted from the
digital images, we performed a 2" factorial experi-
ment for the first test area, from which we con-
cluded that intel contrast did not significantly
contribute to the model. Therefore, this factor
was dropped and subsequently we only performed a
2% experiment for the second test area. The results
without the contrast factor are shown in Table 1.

Table 1. Results of 2° Factorial Experiment
to Define Optimum Feature Combinations

Training Area 1

Comb. R _F Fo.ss A6ps NV Effect
(1) .32 1.49  1.99 8.5 10  33.3
a .32 2.33 2.7 9.5 7 4.3
b .40 11.74  2.76  15.4 3 4.8
ab .54  16.45 2.53  34.7 4 4.0
c .56 10.84  2.25  40.9 6
ac .62 9.02  2.04  44.9 9 3.
bc .67 10.40 1.99 53.7 10 1.3
abc - .66 9.96 1.99 50.8 10 -2.2

Training Area 2

Comb. R . _F_ Fo.ss AGyps NV Effect
(1) .32 1.49 2.04 8.5 10 21.4
a .44 3.60 2.37  17.9 5 6.3
b .25 .96 2.37 5.0 5 0.9
ab .60  3.88 2.04  25.1 9 0.3
c .56 5.33 2.25  27.5 6 4.6
ac .63 3.52 1.95  30.1 11 -8.5
be .63 3.21 .92 .2 12 -1.0
abc .60  3.88 2.04  25.1 9  -5.1

The basic factors in this experiment were:
(1) X and Y attributes applied at random, thus .
results are entirely due to chance; a: tone value
band 5; b: tone value band 7; c: the difference
between the tone values for bands 5 and 7. A run
combination of ab, for instance, means that a two-
dimensional feature space was used with the tone
value of band 5 on one axis, and the tone value of
band 7 on the other axis.

The major conclusions that can be drawn from
these experiments are:

1. With the exception of the runs in which the X
and Y attributes were combined at random, all
models were significant at the 95 percent level
{compare F with Fo.95).

2. One effect stood out above all others; namely,
the difference between the tone values of bands 5
and 7. The values for this effect have been
circled in Table 1.

3. The results for the second training area were
not as good as those for the first one. The reason
for this difference is that the first training area
contained a water body. Water is easily inter-
preted, and must have zero timber volume.
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B. Training Results with the Optimized Estimation
System

After we had established the desirable features
with the described experiment, we trained the system
using both 64-square-mile training areas, using as
features the tone values for bands 5 and 7 and their
difference. We selected a clustering of seven
classes for the final result. Four of these classes
were highly significant. Differential volume levels’
and t statistics for each of these classes as well
as their significance probabilities are presented
in Table 2.

Table 2. Volume Levels and t Statistics
for Final Training
Differential

Volume Level

(1000 Bd. Ft./ Significance

Class Sq. Mile) t Probability

1 6,489 4.02 >0.9995

2 3,284 5.19 >0.9995
3 1,015 0.93 <0.90

4 -545 -0.78 <0.90

5 -638 -0.47 <0.75

6 -1,557 -2.12 >0.975

7 -3,420 -5.91 >0.9995

The F value for this training model was 15.44,
at the 0.995 significance level to be compared with
F7,128 = 3.09. Thus, the hypothesis that the
volume levels were zero could be safely rejected.
Moreover, the obtained F value satisfies a cri-
terion mentioned by Draper and Smith?, namely: for
a useful prediction model the F value should be
larger than four times the selected percentage
point value (15.44 > 12.36). Estimated gains in
precision for the three sampling methods are shown
in Table 3.

Table 3. Gains in Precision for
Combined Training Areas
Sampling Relative Gain
Method (percent)

Stratified Sampling 26.7
Regression Sampling 43.4
Variable Probability

Sampling 43.9

With these results it seemed that all necessary
prerequisites for a successful application of the
system in a much larger testing area were present.

C. Test Results with the Optimized Volume
Estimation System

Within the 1,500-square-mile area, 138 parcels
(square-mile sections or parts thereof) were
selected for the test populations. Not all of
these parcels were covered by the U2 high fiight
imagery. U2 estimates were obtained for a subset
of 95 parcels, which we will call the U2 set, as




compared to the full set. Of the full set 118
parcels were located outside the original training
areas. For the U2 set we could use SP, ES, and of
course U2 estimates. For the full set we could use
only ES or SP estimates. Designating the digital
volume estimates as MSS estimates, we will describe
the test populations by the attribute combinations
as MSS-SP, MSS-ES, and MSS-U2. When working with
the training areas, we always used full one-square-
mile sections, each covering approximately 640
acres. The parcels of the test populations, how-
ever, were often only fractions of these square
miles and could be as small as 40 acres. Taking
this into consideration, we expected that if a
correction for area was not made, this factor could
be responsible for a certain percentage of the

gain in precision, since total volume per parcel is
naturally strongly correlated with the area of the
parcel. Therefore, in addition to using the total
parcel volume as the population attributes, we also
used the mean volume/square mile.

Table 4 contains the results of our testing
effort. The gains for the three sampling methods
are listed in this table for each of the attribute
combinations, for both the U2 and the full set, and
for both total and mean volume.

Table 4. Test Results for the MSS Digital
Interpretation System

(Sample Unit: SP Parcel)

Statistical
Significance

Rel. Gain in
Precision (percent)

Attribute Var
Combinations Strat Regqr Prob _F  Fg.95 _I_

TOTAL VOLUME

Full Set
MSS-ES 32.5 33.9 34.3 70.0 3.90 0.58
MSS-SP 25.3 27.9 32.3 52.6 3.90 0.53
U2 Set
MSS-U2 47.0 35.8 38.2 51.9 3.96 0.60
MSS-ES 28.0 25.4 24.2 31.8 3.96 0.50
MSS-SP 20.8 23.4 26.2 28.5 3.96 0.48
MEAN VOLUME
Full Set
MSS-ES 18.8 13.3 5.6 20.9 3.90 0.36
MSS-SP 13.0 13.7 13.2 21.6 3.90 0.37
U2 Set
MSS-12 30.3 17.7 13.0 20.0 3.96 0.42
MSS-ES 17.8 6.8 4.2 6.8 3.96 0.26
MSS-SP 12.0 11.0 11.0 11.5 3.96 --
MSS = MSS digital interpretation system estimates
U2 = High flight U2 model interpretation estimates
ES = EarthSat estimates obtained by combining
interpretation of 1:40,000 panchromatic aerial
photographs with SP parcel records
SP = Estimates obtained from SP parcel records

Strat = Stra}ified sampling (proportional alloca-
tion

Regr = Regression sampling

Yar Prob = Variable probability sampling
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In contrast to the training areas, the F
statistics and correlation coefficients in this
table are.now related to the assumption of a linear
relationship between the population attributes.

The conclusions that can be drawn from the
testing results in Table 4 are the following:

1. The F statistics show that all linear relation-
ships are significant at the 95 percent level (com-

pare F with Fg.95). A1l of the relationships, with
the exception of the MSS-ES and MSS-SP combinations
of the U2 set for the mean volume, are also signi-
ficant at the 0.999 level. Thus, there is very
little doubt regarding the statistical significance
of the applied results of the volume estimation
technique.

2. The mean volume figures represent the pure con-
tribution of the digital volume estimation system.

These gains are significantly lower than the total

volume figures. Thus, area does play an important

role in the reduction of the variance.

3. We obtained the highest gains for the MSS-U2
test populations. One of the explanations for this
difference may be that a combination of U2 and SP
estimates were used for the training. However, a
more compelling reason is probably found in the
notion that high timber volumes such as those
occurring in old growth stands simply escape detec-
tion on small-scale images. The characteristics
seen on these images are spatial ones and timber
volume is only partly related to spatial arrange-
ment of the tree crowns. '

4. The results for the U2 set were not as high as
those for the full set. A probable reason for this
difference is that 12 parcels of the full set which
are not included in the U2 set were situated in the
training area. »

5. The MSS-ES test population gave higher gains on
the average than the MSS-SP one. This confirms
that the old SP estimates were inferior to the
newer commercial survey estimates.

6. A one-way analysis of variance performed on the
total volume results for the three sampling methods
shows that there is no significant difference
between sampling methods for these results (Fp,i2 =
0.08). Since the volume area relationship is one
which necessarily goes to the origin, variable
probability sampling performs very well when area
is an important factor.

The same analysis of variance performed on the
mean volume figures does show a significant
difference for the sampling methods (F,,12. = 12.76).
Thus, when considering the pure contribution of the
digital system, these methods rank according to
their gains as follows: (1) stratified, (2) regres-
sion, and (3) variable probability.

7. In comparison with the training site results,
it seems that there is a significant decrease in
gain from training to test site.




VIII. FINAL REMARKS

Although the test results were all statisti-
cally significant, it seems that the relatively
small gains attributable to the digital interpre-
tation system (about 13 percent) do not warrant the
cost of commercial use of digital MSS volume esti-
mates under the present configuration. However,
one should not lose sight of the fact that positive
results were obtained in a difficult, mountainous
area such as the Trinity Alps in California. If we
were to make another effort, several improvements
could be made such as the use of a smaller intel
size. It also seems likely that in the future one
will not be restricted by the relatively coarse
resolution of the Landsat MSS scanner.

Another instructive result of the investiga-
tion is that caution is in order when applying low
correlation digital estimates of high flight images
in the sampling survey.. Simple stratified sampling
seems preferable to other methods in terms of gain,
robustness, and ease of use, when area is not an
important factor.

IX. REFERENCES

!l angley, P. G. and van Roessel, J. W., 1975,
"Investigation to Develop a Multistage Forest
Sampling Inventory System Using ERTS-1
Imagery," Final Report, Type III, prepared for
Goddard Space Flight Center, Greenbelt, Mary-
land 20771.

2yan Roessel, J. W. and Langley, P. G., 1973,

"Precision Annotation of Predetermined Primary

SampTing Units on ERTS-1 MSS Images," in

Symposium on Significant Results Obtained from

the ERTS-1 Satellite, Volume I, Goddard Space

Fl1ight Center, Greenbelt, Maryland 20771.

*Butler, G. A., 1969, "A Vector Field Approach to
Cluster Analysis," Pattern Recognition.

“*Andrews, H., 1972, Introduction to Mathematical
Techniques in Pattern Recognition, Wiley
Interscience, New York.

SRoese, J. A., 1969, "Application of Adaptive Clus-
tering Techniques to Multi-variateNormal Data,"
MS Thesis, University of California, San
Diego, Department of Information Science.

6Zarcovic, S. S., 1964, On the Efficiency of Sam-
pling with Varying Probabilities and the
Selection of Units with Replacement,
Biometrica ‘3.

7Drapér and Smith, 1966, Applied Regression
Analysis, John Wiley and Sons, Inc., New York.

8 angley, P. G., Aldrich, R. C., and Heller, R. C.,
1969, Multi-stage Sampling of Forest Resources
* by Using Space Photography--An Apcllo 9 Case
Study, Volume 2: Agr., Forest., and Sensor
Studies, .Proc. 2nd Annual Earth Resources
Aircraft Program Review, pp. 19-1 to 19-21,
~ NASA MSC, Houston, Texas.

4B-40

*Langley, P. G., 1971, Multi-stageSampling of Earth
Resources with Aerial and Space Photography,
in Monitoring Earth Resources from Aircraft
and Spacecraft, NASA, SP-275, Washington, D.C.,
pp. 129-141.

%Cochran, W. G., 1963, Sampling Techniques, Second
Edition, John Wiley and Sons, New York.

''Murthy, M. N., 1967, Sampling Theory and Methods,
Calcutta, Statistical Publishing House, 684 pp.

ACKNOWLEDGMENTS

The author is indebted to Philip G. Langley,
Principal Investigator of the Landsat study, and to
his co-workers Terrell D. Smith and Steven L. Wert.






