MACHINE PROCESSING OF AERIAL DATA FOR
AGRICULTURAL RESOURCES INVENTORY AND SURVEY EXPERIMENT

D. S. KAMAT, K. L. MAJUMDER, T. J. MAJUMDAR,
I. C. MATIEDA, C. V. S. PRAKASH AND V. L.
SWAMINATHAN
Indian Space Research Organisation, SAC,
India

I. ABSTRACT

The multiband aerial data for one
flight line, stretching over 38 Kms which
covers an area of 6528 hectares, of the
Agricultural Resources Inventory and Sur-
vey Experiment, Patiala has been analysed
by an unsupervised automatic processing
technique. The results are presented in
the form of tables and thematic maps. They
are verified with the results obtained
individually by visual photointerpretati-
on techniques.

II. INTRODUCTION

The Agricultural Resources Inventory
and Survey Experiment (ARISE) project was
initiated by Indian Space Research Organisa-
tion (ISRO) and Indian Council of Agri-
cultural Research (ICAR) with a view to
study soil and landuse and to inventory
agricultural produce. For these purposes,
two regions namely Anantapur District in
Andhra Pradesh, and Patiala District in
Punjab were chosen for aerial photography.
The basic study was organised around mul-
tiband photographs in bands 0.5 - 0.9 mic-
ron, 0.5 - 0.9 micron, 0.6 - 0.7 micron
and 0.5 - 0.6 micron. In order to collect
the photographs, cameras were mounted on
an aircraft flying at a height of 7800 ft.
The scale of the imagery is 1:30,000.

The Image Processing and Analysis
Division (IPAD) in Space Applications Cen-
tre (SAC) has used the three spectral
bands namely 0.5 - 0.9 micron, 0.6 - 0.7
micron and 0.5 - 0.6 micron for modelling
purposes. It was found that out of the
these three band photographs, two bands name-
ly, 0.6 - 0.7 micron and 0.7 - 0.9 micron
could give significant results as far as
classification of cover types are concern-
ed. There is also a similar view reported
in the literature.

In this paper an attempt is made to
classify the land cover corresponding to
data over Patiala region. ARISE Patiala
Campaign was mounted in February - March
1975. Out of the available imagery one com-
plete flight line is selected in a random
fashion and the selected flight line, viz.
AR-18W is processed using automatic pro-
cessing technique. The flight line stret-
tches over 38 Kms and covers an area of
6,528 hectares. The intention to cover one
flight line completely was, apart from au-
tomatic classification of land cover, to
organise for large scale and continuous
processing of remotely sensed data using
the available computer and other faciliti-
es.

One of the needs of work in relation to
remotely sensed data and its classifi-
cation is to extend the methodology from high
resolution (scale 1:30,000) imagery like
photographs obtained from an aircraft to
low resolution imagery (scale 1:1,000,000)
obtained from spacecraft borne sensors. As
LANDSAT-2 was launched in January 1975, a
synchronous LANDSAT-2 imagery over Patiala
is available corresponding to dates of
ARISE campaign and hence the complete land
cover and type classification scheme used
for ARISE Patiala data will be helpful in
extending the work for LANDSAT type low
resolution pictures. In fact the results of
automatic processing of ARISE, Patiala
data when properly collated with ground
truth will provide a dependable strata of
information required in analysing satel-
tile imagery.

III. OBJECTIVES OF AUTOMATIC PROCESSING

The objectives of this work are the
following:

1. To classify the land cover of Patiala
District using automatic and digital
classification methods.
2. If the classification method can discriminate between wheat and all other crops then there exists a possibility of extending the procedure to distinguish between wheat and wheat by use of supervised sampling techniques. Wheat is the major crop of Patiala District and it is known that wheat is grown in the district in varieties like W-357, Sonalika, W-RR21 and W-FB18 and the rest. There is also the need to study the proportions of the various varieties of wheat cultivated in Punjab.

3. There is an interesting fact about the Punjab agricultural practices namely that the areas which are under wheat cultivation and are contiguous generally admeasure 5 hectares or more. Therefore, the automatic processing method used in ARIS Patiala imagery in classifying wheat can be extended to imagery obtained from LANDSAT-2 which has a resolution element admeasuring 70 meters x 70 meters or roughly half a hectare.

4. With the experience obtained from this work procedures can be developed to find a suitable model for processing the multiband imagery using stratified sampling technique.

In this paper, the results in respect of objectives 1 and 2 are presented.

IV. ACQUISITION OF DIGITAL INFORMATION

The photographic imagery in bands 0.6 - 0.7 micron and 0.7 - 0.9 micron is digitized using Optronics Photoscan P-1000 System. This system has the facility to select variable resolutions of pixels in sizes 25 microns, 50 microns and 100 microns and grey scale value lying between 0 to 255 for photographic density range of 0-3D. The imagery for which the results are presented in this paper is digitized using 50 micron resolution. Thus each picture element usually called a pixel, measures 1.5 meter x 1.5 meter on ground. As the actual photographic area on the film imagery is 55 mm x 55 mm there are 1,221 million pixels (bytes) of data in each band. The output from the Photoscan system comes in COT format wherein one picture element's grey value occupies one byte.

V. DATA STORAGE RETRIEVAL AND PREPROCESSING

A. Data Transfer

The two band digital output in COT format obtained from Optronics Photoscan device is transferred to an input data file consisting of 29 million bytes capacity IBM 2314 disk for processing purposes. The data storage and retrieval scheme is discussed in detail in a technical note. As the two consecutive photographs are having an overlap of approximately 20%, care is taken that data for two consecutive scenes in both the bands resides in the input data file.

For convenience of handling the data and for other processing purposes, the data in each scene is segmented into a number of strips and each strip into a number of blocks.

B. Data Quality Examination

Once the imagery is digitized and the digital data is transferred to disk, a system of routines are used to examine the quality of data before proceeding to process the data. The system of routines involve routines for gray level printing, frequency distribution, histogram etc.

C. Registration of Multiband Data

In order to classify the two band data it is necessary that data in both the bands for a scene is properly registered. Sequential Similarity Detection Algorithm (SSDA) is used to register the two band imagery.

D. Scheme for Analysis

The computer facility available at SAC and Physical Research Laboratory (PRL) Ahmedabad is an IBM-360/44 System and is operated under batch processing mode. Because of this, the processing work has been carried out in different steps. The digitized data for five/six scenes in both bands resides simultaneously in INPUT file. As the analysis progresses, the results of the analysis are stored in TEMP/OUTPUT file. The digitized two band data for the new scene replaces the data of the analysed scene. A block schematic showing the flow of information between various functional units/files is shown in Figure 1.

VI. CLASSIFICATION METHOD

When the information about the number of classes and their signatures either in the form of training fields and test fields or from any other sources are not available for the remotely sensed multispectral data, the obvious approach for analysing the data should be an unsupervised one. In the context of remote sensing one of the unsupervised approaches is clustering i.e. grouping of data on the basis of inherent relationship existing among the elements of each group. Clustering has
emerged as one of the most important techniques for pattern recognition of features or objects of interest, as observed by remotely located sensors.

A. Basis of Classification

The classification method used for the multiband data analysis, as mentioned earlier, is an unsupervised clustering technique and the algorithm used is the Iterative Self Organising Clustering System. The basis of the algorithm is as follows: Firstly the data points are assigned to the nearest cluster centre and the cluster centres are modified either by 'combining' or 'splitting' the existing clusters where the nearest cluster centre can be obtained on the basis of the minimum of the distances from the existing clusters. Secondly each class or cluster can be considered as the union of an appropriate number of subclusters of nominal sizes.

B. Procedures used in Classification

After the multiband data is properly registered and the overlap between two consecutive scenes is removed, the pixels are classified according to the minimum distance criterion. Statistics for each scene, essentially the mean and standard deviation of the clusters, are then computed. The cluster centres are updated each time. The clusters are combined or split according to the specified criterion of maximum standard deviation and minimum distance respectively. The thresholds for standard deviation, that allow the spreads for classes, and the intercluster distances, which define when two clusters can be combined, are set empirically.

At the end of the classification, results are stored in the output data file on the disk. The classification information for all the pixels in a scene is stored in a temporary file created on disk and a picture can be reconstructed using that data.

As stated earlier, the statistics for the identified clusters within each scene is stored in the OUTPUT data file. One can assign a gray code value to a picture element belonging to a unique class or a theme. In the final analysis each cover class may be identified with a theme. Using such themes a thematic photomap for the whole scene may be written. However, thematic map writing for a scene is optional. The gray values corresponding to each pixel are stored in a temporary file TEMP from which a thematic photomap is generated.

A program for generating thematic maps reads the data from the TEMP file, formats the data and writes it on magnetic tape which serves as input to the Photo-write system Optronics P-1500 for generating thematic maps on a film transparency.

VII. RESULTS AND DISCUSSION

For the whole area mentioned earlier a total of thirty-six classes are obtained using the classification method discussed in the previous section. This does not account for the classes which constitute much less than 0.4% of the total. Out of the thirty-six classes only twenty-three classes could be assigned a particular class label. These results are presented in Table 1. The remaining thirteen classes could not be assigned any label; the results of which are presented in Table 2. The class labels in Table 1 are based on the basis of the interpretation done on false colour infrared imagery by an independent group at SAC.

The false colour infrared transparencies as stated in the introduction earlier, were obtained concurrently with the other multi-band imagery. From Table 1, it can be observed that there are as many as ten variations in wheat and that wheat represents approximately 50% of the identified classes. So many variations in wheat as extracted from the multiband reflectance data may be due to different growth stages, and differences in cultural practices from farm to farm. For some other cover types also like barsumi one notices more than one set of spectral reflectance characteristic measure as noted in the Columns 3 and 4 of Table 1.

In order to verify the results obtained by automatic processing of multiband data a scheme was formulated by which it could be possible to check these results against results obtained by visual interpretation. The personnel who did the interpretation were involved in certain field studies which helped them in formulating the interpretation keys.

The picture in Fig. 2 is a photograph obtained from a thematic photo generated in a way described in Section VI-B. Figure 3 is a scaled sketch of photointerpretation analysis carried out on the original scene photographed in colour infrared band. Similarity and dissimilarities of the two can be assessed.

In the same fashion thematic photos maps are generated on transparencies for another scene shown in Figure 4 and the corresponding photointerpreted sketch is shown in Figure 5.
One interesting point to be noted in automatic processing technique is that for some covers like human habitation (village residential areas) it was not possible to extract typical reflectance measures which could be used to identify them uniquely. Such areas do form about 6% of land cover in rural areas of Punjab. The automatic interpretation procedure thus accounts for nearly 82% of land cover categories for the areas processed.

The work on automatic processing of multiband photographic imagery relating to a part of Patiala district has given us a certain statistics in respect of well-known land covers. The categories of land cover were designated names as available from the results of photo-interpreted data. Using these two sets of information together it was found that over an area of 6529 hectares and during the month of March 1975 wheat was 39% of the total. Other cover types included land under barstil, fallow land, minor crops, sugarcane, bare soil, waste land and formed 29% of the total. There was no characteristic reflectance signature recorded in respect of human habitation. However, on the related thematic photomap it is possible to identify land under human habitation by peculiarities of textures etc.

VIII. ACKNOWLEDGMENT

The authors wish to thank Mr. B.S. Joshi for neatly typing the manuscript. Their thanks are also due to the staff of Aerial Surveys, Ground Truth and Photo-interpretation Division, SAC for providing results of interpretation of frames discussed in this paper.

IX. REFERENCES

TABLE-1. STATISTICS OF LABELLED CLASSES.

<table>
<thead>
<tr>
<th>Class Number</th>
<th>Corresponding ground cover</th>
<th>Mean Gray Value Band 1</th>
<th>Mean Gray Value Band 2</th>
<th>Number of Pixels</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. W</td>
<td>170</td>
<td>175</td>
<td>25,607,53</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>2. W</td>
<td>175</td>
<td>100</td>
<td>9,61,144</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>3. W</td>
<td>196</td>
<td>168</td>
<td>13,88,379</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>4. W</td>
<td>196</td>
<td>148</td>
<td>4,02,006</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>5. W</td>
<td>184</td>
<td>120</td>
<td>16,12,955</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>6. W 80</td>
<td>158</td>
<td>111</td>
<td>5,78,989</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>7. W 80</td>
<td>180</td>
<td>148</td>
<td>17,54,000</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>8. W 80</td>
<td>160</td>
<td>130</td>
<td>8,88,553</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>9. W 21</td>
<td>196</td>
<td>92</td>
<td>1,36,471</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>10. W 21</td>
<td>195</td>
<td>138</td>
<td>1,36,471</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>11. B</td>
<td>186</td>
<td>102</td>
<td>16,31,028</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>12. B</td>
<td>170</td>
<td>180</td>
<td>4,14,333</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>13. FA</td>
<td>162</td>
<td>169</td>
<td>12,48,955</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>14. FA</td>
<td>172</td>
<td>185</td>
<td>7,53,178</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>15. MV</td>
<td>182</td>
<td>160</td>
<td>10,50,080</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>16. SCH</td>
<td>195</td>
<td>137</td>
<td>5,91,297</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>17. SC</td>
<td>157</td>
<td>138</td>
<td>1,18,741</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>18. SC</td>
<td>142</td>
<td>165</td>
<td>7,85,504</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>19. SC</td>
<td>145</td>
<td>111</td>
<td>92,750</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>20. SC</td>
<td>178</td>
<td>134</td>
<td>9,91,042</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>21. BS</td>
<td>174</td>
<td>186</td>
<td>2,85,293</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>22. BS</td>
<td>182</td>
<td>156</td>
<td>2,08,614</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>23. WL</td>
<td>159</td>
<td>128</td>
<td>78,630</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

1) Pixel Size : 1.5 meter x 1.5 meter
2) The interpretation of the scenes were done at AGFD, SAC.

SYMBOLS: W = Wheat, B = Bare land, FA = Fallow Land, MV = Minor Crops, SCH = Sugarcane Harvested, SC = Sugarcane, BS = Bare Soil, WL = Waste Land.

TABLE-2. STATISTICS OF UNLABELLED CLASSES.

<table>
<thead>
<tr>
<th>Class Number</th>
<th>Mean Gray Value Band 1</th>
<th>Mean Gray Value Band 2</th>
<th>Number of Pixels</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 161</td>
<td>82</td>
<td>3,00,314</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>2. 172</td>
<td>73</td>
<td>1,99,403</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>3. 193</td>
<td>193</td>
<td>7,03,949</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>4. 188</td>
<td>212</td>
<td>28,244</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>5. 175</td>
<td>197</td>
<td>31,894</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>6. 194</td>
<td>194</td>
<td>11,383</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>7. 192</td>
<td>144</td>
<td>5,95,959</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>8. 203</td>
<td>105</td>
<td>79,395</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>9. 213</td>
<td>94</td>
<td>31,429</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>10. 126</td>
<td>141</td>
<td>21,236</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>11. 137</td>
<td>149</td>
<td>1,15,101</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>12. 171</td>
<td>212</td>
<td>33,169</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>13. 200</td>
<td>209</td>
<td>29,340</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

1) Pixel size 1.5 meter x 1.5 meter.

1977 Machine Processing of Remotely Sensed Data Symposium

128
Figure 2. THEMATIC PHOTO MAP OF FRAME-5
Figure 3 - SKETCH OF PHOTO INTERPRETATION FOR FRAME - 5
Figure 4: THEMATIC PHOTO MAP OF FRAME-26

1977 Machine Processing of Remotely Sensed Data Symposium
Figure 5. SKETCH OF PHOTO INTERPRETATION FOR FRAME-26