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A PRACTICAL METHOD FOR CORRECTING
BIDIRECTIONAL REFLECTANCE VARIATIONS

DWIGHT D. EGBERT .

General Telephone Electronics/Information
Systems :

I. ABSTRACT

The purpose of the investigation described here
was to analyze angular bidirectional reflectance
variations and test the hypothesis that first order
variations could be described from a consideration
of shadows created by surface perturbations. The
results reported here demonstrate the validity of
this approach, and while it is not suitable for
calculating absolute spectral reflectance charac-
teristics, the development of such a model was not
the objective of the investigation since other
models already exist for these calculations. In-
stead, a model was needed which can make relative
angular corrections to bidirectional reflectance
measurements independent of the details of surface
geometry. The theoretical model derived in this
investigation from an analysis of shadow formation
is such a model.

II. INTRODUCTION

This paper presents the results of the study of
a new approach for predicting angular reflectance
variations of very rough surfaces in the visible
and near infrared region of the electromagnetic
spectrum.

Other studies attempting to predict angular
variations in reflectance (Suits, 1972; Smith and
Oliver, 1972) are based upon extensions of the
Allen, Gayle, and Richardson (1970) canopy model.
The resulting models have proven reasonably
successful for certain vegetation canopies and
indirectly take into account some shadowing
effects. Hapke (1963), alternatively, started with
a similar model and altered it significantly to
take into account a preferred scatter direction
caused by obstructions. This alteration allowed
the shadowing obstructions to greatly influence the
resulting reflectance vs. angle functions. Hapke's
model agreed very closely with experimental results
(Hapke and Van Horn, 1963) for several porous sur-
faces.

The approach taken here starts with the assump-
tion that shadowing parameters are first order
determinants of angular reflectance variations.

From this viewpoint a new model was developed to
predict these angular variations rather than try-
ing to bend the older model into a form to allow
adequate influence of the shadowing parameters.
Experimental reflectance measurements were made for
several laboratory model surfaces as well as "real-
world" surfaces under controlled angular. illumina-
tion conditions. . The surface geometrical roughness
properties were measured to provide input para-
meters for the reflectance model. The reflec-
tance variations predicted by the model were then
compared with the experimental measurements to

test for: statistically significant correlation.

The results of the investigation demonstrated
that for both laboratory and field experiments,
two factors explain ‘the majority of the bidirec-
tional reflectance variation.

(1) when a surface is illuminated by a colli-
mated constant intensity light source,
85 to 90 percent of the bidirectional
reflectance variance is explained by the
cosine of the illumination incidence
angle.

(2) A consideration of shadowing explains 80
to 85 percent of the remaining bidirec-
tiobnal reflectance variance.

It was found that the model worked quite well
with only two input parameters to describe the
surface geometry.

(1) average number of perturbations per unit
" area

(2) average perturbation size

It is significant that the theoretical shadow model
derived for ideal perturbation shapes accurately
predicts reflectance variations for natural sur-
faces with irregularly shaped perturbations. This
demonstrates that total shadow area, and the rate
of change of this area with angle, are independent
of the exact shape of surface perturbations. Thus,
an operational reflectance correction model is
feasible which will not require detailed informa-
tion about surface geometry as input.
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III. APPROACH

The classical approach for calculating the
reflection of electromagnetic waves from surface
boundaries typically utilizes one of two ideal
types of surfaces. The first is an ideal specular
reflecting surface, and the second is an ideal
diffuse or Lambertian surface. For precisely
described surface geometries, the reflection prop-
erties of any surface can be exactly calculated
using this classical approach. However, the
precise description of the surface geometry which
is required may include microscopic surface
irrégularities, and the approach may produce
equations of such length and complexity that solu-
tion is impractical.

The types of surfaces of interest in remote
sensing are neither ideally specular nor ideally
diffuse. Also, if a theoretical model describing
the angular reflectance variations of these
surfaces is to be useful, it must be relatively
independent of precise surface geometries. The
approach to describing these surfaces which is
taken here is to approximate the reflectance
variations with a superposition of a specular term
with a diffuse term. Both of these terms are
modulated by a shadow function which is the pri-
mary factor in this model. For most surfaces of
interest, the specular term will be small but not
negligible, especially at large incidence illumi-
nation and viewing angles.

The interaction between the shadow function
and the other terms is demonstrated with a qual-
itative example consisting of a nearly Lambertian
plane surface upon which spherical perturbations
are placed. First, consider looking within a
surface area dA from some arbitrary, but fixed,
direction while varying the incidence illumination
angle. For example, while looking vertically
down on the surface, the following changes can be
seen. If the surface is illuminated vertically
(i.e., 8, = 0}, no shadows appear and primarily
diffuse reflectance is observed for both plane and
perturbations over the entire area dA as shown in
Figure la. Now, as 6., is allowed to change to
some non-zero value (&.g., 30°), the appearance of
the surface is broken up into primarily diffuse
reflecting areas interspersed with shadow areas of
essentially zero reflectance as shown in Figure lb.
Further, if O, is allowed to increase to a larger
value (e.g., ©&0°), the appearance of the surface
will change to include more and larger shadow
areas as shown in Figure lc.

From this example, it is clear that the single
reflectance value measured by a remote sensing
system, integrated over the entire surface area da,
will be proportional to the fraction of dA which is
not in shadow. Thus, in order to describe the
bidirectional reflectance,. it is only necessary to
calculate the fraction of dA which is not in shadow
for any given set of incidence illumination angle,
incidence look angle, and azimuth angle. This
modified area is then multiplied by a constant for
the plane and by the Lambertian reflectance pattern

for the spheres. For this example, the specular
terms are very small, but they are alsoc included in
a similar manner. : ’

Even from this viewpoint, an exact calculation
of the shadow area requires a detailed knowledge of
the surface geometrical properties. However, it
was hypothesized that statistically the total
shadow area within dA, and more importantly the
change of shadow area with angle, would be depend-
ent not on the exact shapes of the perturbations,
but rather on gross average geometrical parameters.
This hypothesis was confirmed during the detailed
laboratory experiments performed as a part of this
investigation. Visually, this behavior is apparent
in Figure 2, which shows vertical views of several
different objects and their shadows under three
different angles of illumination. To a good
approximation, the areas of the shadows cast on the
horizontal plane as well as the rate of change of
these shadow areas are primarily determined by the
objects' heights and widths rather than by their
detailed shapes. Thus, it is to be expected that
over the surface area 4A, the shadow controlling
parameters will be a) average perturbation height,
b) average perturbation width, and c) total number
of perturbations within dA (i.e., perturbation
density). Also, to a good approximation, the Lam-
bertian reflectance patterns for ideal perturba-
tions such as spheres, ellipses, and cylinders
(which are well known) can be used to describe the
patterns of more irreqular perturbations. This is
possible because the entire ensemble of perturba-~
tions within dA is considered as a single quantity.

As a result of these considerations, the
approach in this investigation has been to start
with an analysis of artificially prepared surfaces
and proceed to the analysis of "real-world"” sur~-
faces in the following manner. First, two differ-
ent model surfaces (spherical perturbations and
vertical cylinder perturbations) were chosen as
being reasonably representative of real surfaces.
Nine model surfaces of each of the two types were
generated with different values of perturbation
size and density distributions. Laboratory models
were constructed for each surface and exact mathe-
matical descriptions for shadow and reflectance
behavior were developed for each of the two types
of perturbations. Measurements of reflectance were
made under a controlled range of 432 different
angular conditions for each surface. Then, the
appropriate distribution parameters were input to
the appropriate mathematical model and the pre-
dicted reflectance values compared with the meas-
ured values. .

Particular attention was given to those para-
meters and terms which controlled the behavior of
the mathematical models. As terms were encountered
which contributed little to the behavior of the
reflectance changes, they were combined or elimi~
nated, particularly if they required input about
the details of the surface geometry. The simpli-
fied models were again tested against the empirical
data to determine if the results had been degraded.
Finally, after the models had been reduced to
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require minimum surface parameter input data, they
were tested against empirical reflectance data of
real surfaces obtained for 441 different angular
conditions for each surface during field experi-

ments.

IV. THE MODEL

The basic equations describing each term of
the shadow model are presented here with minimum
explanation. Anyone interested in applying or
testing the model is urged to obtain a copy of
the detailed investigation report (Egbert, 1976},
which contains a 50 page derivation of all equa-
tions.

The bidirectional reflectance distribution
function was defined by Wolfe and Nicodemus
(1965) and revised by Nicodemus (1970) as:

ac (6.,9.)

. =_xrr'’r -1 (1)
fr(ei'¢i'er'¢r) T L. (6,,$.)dQ,
SRS A Ly |

sr

where dﬂi = cosf.,dw, (the projected solid
angle)

L,
1

radiance _of Ehe>source,
277
watts m “sr
dLr(er,¢r) = differential radiance in
the direction (Gr,¢r).

This is the function that describes the amount of
energy (per unit projected solid angle) reflected
from a surface toward a remote sensing device at
an angle (6_,$ ) from illumination by the sun at
an angle (0.,¢.). The primary objective of this
study was tO determine the feasibility of calcu-
lating the form of £ _(0,,9.:;8_,¢ ) from the
statistical charactefisticd of shadow producing
surface perturbations. In both cases 0 represents
an incidence angle measured from the normal to the
surface and ¢ is azimuth angle measured in the
plane of the surface. The subscript r represents
reflectance or observation direction while i
represents illumination direction. In later
equations, a @ subscript will be used to denote the
difference angles between the two directions.

The intended use of the mathematical model
developed in this investigation is to correct
bidirectional reflectance measurements obtained at
any arbitrary set of angles to some standard
reflectance value. The choice of this standard
reflectance is arbitrary so long as it is well
defined. Since the mathematical model will be a
correction function, it is only necessary to model
the relative functional shape of £ and not the
absolute magnitude. The magnitude will be obtained
from the measurement to be corrected. The standard
reflectance chosen for the model development here
is an “equivalent"” Lambertian distribution factor

L

As defined here the equivalent Lambertian £
for a non-Lambertian surface is the average value
of all discrete values of f_over a hemisphere when
9, = 0. If experimental data are in the form of
pércent reflectance calibrated relative to a stand-
ard diffuse target, then fL can be approximated by:

=1
£L = Too

H ™M

1
N %R(0°,9r) (2)

r=1

A normalized function can be defined which
relates the measured bidirectional reflectance tq
this equivalent Lambertian factor. 'This normalized .
function is the precise function that is derived in
this investigation and can be defined by:

£,(6;,0,18,,0,) (3)

Y0, ,6,:0_.6) = -

The relative percent reflectance from a particular
surface at some set of angles can be predicted
from:

%R = 100 fL W(Si,¢i79r,¢r) (4)

The function ¥ represents a normalized bidi-
rectional reflectance, and a single functional form
can be used to describe categories of surfaces.
Then, when the function is applied for a particular
surface, it is converted to bidirectional reflec-
tance or percent reflectance by multiplication by
constants.

Since it is possible for the angular variaticns
in path radiance to be of the same order of magni-
tude as the angular variations in reflectance, it
is imperative that path radiance be taken into
account in any calculation or measurement. Theo-
retical work is being conducted on the magnitude
and variation of path radiance by Turner, et al.
(1971) at the University of Michigan. They have
developed a radiative transfer model which agrees
quite well with experimental measurements. There-
fore, it has not been an objective of this study
to investigate the atmospheric contributions to
the total radiance. Rather, those specific changes
in the radiance reflected from the surface which
are caused by the character of the surface have
been the object of investigation. In operation,
the model derived here for V(Gi,¢i;6 0 ) will
most effectively be used. in conjuiictlon with an
atmospheric correction model.

In order to allow maximum generalization within
the limited scope of the study, a group of surface
categories was methodically chosen to represent a
broad spectrum of "real-world" surfaces. In all
cases, the surface categories were chosen on the
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basis of surface geometry and their texture as pre-
sented to the aerial remote sensing system. All
model surface construction was performed using this
group as a guide. Since it was not within the
scope of the study to make different models to
represent each surface in the group, two different
simplified models were chosen. These were

1) spheres placed on a plane surface and 2) vert-
ical cylinders placed on a plane surface. The
equations presented here represent the spherical
perturbation model specifically, although some
terms are common to both. For a complete treat-
ment of both models, see Egbert (1976).

A total of five specific reflectance terms
can be defined which are used in the normalized
bidirectional reflectance model.

(1) Lambertian reflectance from the illumi-
nated and observed portion of a plane
surface

(2) Lambertian reflectance from observed
plane shadow area

(3) Lambertian reflectance from surface
perturbations

(4) Forescatter specular reflectance from a
plane surface

(5) Backscatter specular reflectance from
surface perturbations

Additionally, a sixth factor is defined which is
the heart of the shadow approach.

(6) Shadow function which determines the
relative mixture of the five reflectance
terms and acts as a modulation factor.

The total normalized bidirectional reflectance

Y can be written as a superposition of these five
terms.

Y = DRPL + DRSDW + DRS + DRSPF + DRSPB (5)

terms are in order as defined above
and contain shadow function.

where:

It will be shown that all five terms in equation 5
have a common factor of IR? (R = sphere radii).
Further, all constants are defined from four sur-
face parameters:

(1) da = surface area being modeled

(2) TN = total number of perturbations in dA

(3) RM = mean perturbation radius

(4) fL

equivalent Lambertian distribution
factor

W77 Machine Processing of Remotely Sensed Data Symposium

It should be noted that dA is a function of the
sensor and £ is estimated from reflectance
measurements, SO really only TN and RM need be
estimated for unknown surfaces. It should also be
noted that the factor ZR? can be approximated by:

T
2

R? = TN RM2 (6)

™2z

j=1

When this approximation is used, the entire reflec-
tance model can be evaluated in terms of the four
surface parameters listed above. The approximation
was applied during the analysis of the laboratory
experimental data and the results showed no
noticeable degradation of model accuracy.

After evaluating ¥ for a specific surface, the
relative percent reflectance is given by:

*R(6,,9,:6 ,¢ ) = 100 £ W(Gi,¢i:9r,¢r) (7

For a constant intensity-collimated illumina-
tion source the irradiance per unit area incident
upon the surface will vary as cosf,. Thus, the
diffuse normalized bidirectional reflectance from
the plane surface is given by:

DRPL = AILL cosei (8)

Where, the fractional part of da which is both
illuminated and observed is:

arrL = 9B = AZ: - ASDW (9)

And the total observed shadow area within dA is:

g

ASDW = _A;EE

3

(10)

il ™

mR? |(1-PROB)secH, -
1 1

And, the viewing ellipse area for a constant angu-
lar field of view sensor is:

&

T

=

avW

]
L -

wR2 sec@ (1~PROBV) (11)

j=1

Fomv—s

i

Equations 8 through 11 define all of the terms in
DRPL except PROB, PROBV, and AET. PROB is a
function which describes the probability of per-
turbation shadows overlapping as the illumination
incidence angle ei becomes increasingly larger.
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PROB is defined by:

PROB = L (12)
1 + AR EXP(BR(90°-ei))

and,

PROBV = PROB(Gr) (13)
AR and BR are calculated through a linear -least
squares approximation of:

1
= = [ 4
In(gess = 1) = In(AR) + BR(90 8,) (14)

at four "critical angles" defined from the surface
parameters TN and RM.

The first critical angle is defined as the
angle at which the total shadow area is equal to
one~fourth of da.

CAL = cos L(4TNTRM?)/dA) (15)

This critical angle is approximately the angle at
which the major axis of the shadow ellipse cast by
a sphere of radius RM is equal to the mean spacing
between spheres. Thus, overlap should just start
to occur at CAl. PROB is defined as being equal to
0.05 at CAl. The second critical angle is defined
as being the angle at which the total shadow area
is equal to twice dA.

CA2 = cos L ((TNTRM2Y (dA)) (16)

At CA2 overlap should be near 100% and PROB is
defined as being equal to 0.95. The third critical
angle is defined as the average of the secants of
the first two critical angles, and the fourth is
defined as the arithmetic average of the first two.
At CA3 PROB equals 0.5 and at CA4 PROB equals 0.25.

The final term in equations 8 through 11 is
AET which is the amount of shadow area on the plane
surface which is hidden from observation by the
obstructing perturbations. For the spherical per-
turbation model, both the shadow area and obstruc-
ted area are ellipses. 1In this case, AET is the
area of intersection of these two ellipses. The
calculation of this area for any given set of
angles is straightforward but the general integral
equations are messy and. lengthy, and so, they are
not included here.

The next term in equation 5 is the Lambertian
reflectance from the shadowed area and is given by:

ASDW
.DRSDW = “an cs (17)

where CS = a constant <<1
It was found empirically during the laboratory

experiment phase of this study that a good estimate
of CS is given by:

cs = (0.9 fL)2 (18)

The diffuse reflectance from the perturbations
within dA is given by:

2 TN A
DRS = k3 'Z R (W-Sd)cosed + 51n0d (19)
=1
secer(l-PROBV)
da
where 6, = smallest angle between illumination

direction and observation direction

The specular reflectance terms are similarly
defined. The forescatter specular term is given
by:

AILL RS(ei) o
DRSPF = -—-—-f—-——\/—EXP(-CH 8_2) (20)

L

TN RS(0,)
+ £ R? 3

.2
sin” (0. )
j=1 L h

Where O _ = smallest angle between specular
direction and observation direction

RS = ——— (21)

RH and RV are the specular terms calculated from

Fresnel's equations (Born and Wolf, 1959). It was
found that the complex dielectric constant used to
solve Fresnel's equations could be approximated by:

=]
e

1+ 10 sz (22)

(23)
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These values for n and k were used in the final
form of the reflectance model and performed quite
well. CH is a constant describing the angular
spread of the specular term. It is convenient to
describe CH in terms of a specular half power
angle. Half power will occur at some angle eh so:

o =/-lné055) =/2é7ze 20)
h h v

A value of 30° was used for Sh for all surfaces in
this study.

The last term in ¥ is the backscatter specular
term given by: '

ATLL RS(ei) cH
DRSPB = ——————————-——-EXP(—CHzedz) (25)

fL NG

_ 2 2 _ a2
(1-EXP (-CH ef )) (1-EXP(-CH (ed ef) ))

These equations define the exact form of the
shadow model normalized bidirectional reflectance
for the ideal surface consisting of spherical
perturbations on a plane. As can be seen from
the equations, all equations can be evaluated from
estimated values for only two surface geometrical
parameters (TN, RM). A second set of equations
(Egbert, 1976) define a similar model for the
ideal surface consisting of cylindrical perturba-
tions on a plane. These equations require values
for three surface geometrical parameters where
the mean sphere radius value is replaced by mean
cylinder radius and height (RM, HM). Both
models were evaluated during the course of this
study as to their accuracy in predicting bidirec-
tional réflectance variations for both ideal
laboratory surfaces and non-ideal "real-world"
surfaces.

V. EXPERIMENTAL RESULTS

The investigation consisted of two major parts,
1) laboratory experiments and 2) field experiments.
During the laboratory experiments, nineteen arti-
ficial surfaces were constructed with precisely
defined perturbation geometrical properties. Two
different idealized perturbation shapes were used
(spheres, and vertical cylinders). The field
experiment part of the investigation tested the
accuracy of the theoretical models when applied to
five "real-world" surfaces. Two of the field
experiment surfaces (asphalt parking lot, and
plowed field) were appropriately described by the
spherical perturbation model, while two others
(Kentucky Fescue grass, and Buffalo grass) were
appropriately described by the cylindrical pertur-
bation model. The fifth surface (alfalfa) was not
Precisely described by either model, and was com-
bared with both to determine the dependence of the

shadow approach on accuracy of perturbation shape
description. ;

: i
A. LABORATORY EXPERIMENTS

- The two basic laboratory surface configura-
tions consisted of a nearly Lambertian plane upon
which two different types of nearly Lambertian
perturbations were arranged (spheres and cylinders)
The sphere radius and cylinder height distributions
were Gaussian to simulate the size distributions of
"real-world" surface perturbations. The density of
perturbations per unit area (TN/dA) was varied
while holding the Gaussian radius distribution con-
stant for five different densities. Then, the
variance of the size distribution (02) was varied
for a constant density to generate an additional
four surfaces.

A theoretical reflectance value was calculated
from ¥ for each sample surface at each of 432 dif~
ferent sets of angular conditions and compared
with the measured value. Several statistics were
calculated for each surface for an evaluation of
the effectiveness of Y. The single best evaluating
parameter was found to be the coefficient of deter-
mination r?. Evaluation of detailed outputs for
all surfaces showed no anomalies or errors of
estimation which were not also exhibited by the
summary statistics. Table 1 contains these statis-
tics for the nine spherical perturbation model
surfaces.

In order to determine which terms of ¥ contri-
bute the most to accurately predicting angular
reflectance variations, the data analysis procedure
was repeated five more times. Each time one of the
major terms of Y was deleted. (see equation 5). The
coefficients of determination for each of these
cases are presented in Table 2.

As shown in this table, the coefficient of
determination r? is very high for all surfaces.
Examination of the detailed outputs revealed that
both the calculated and measured reflectance )
values are dominated by the cosf, term due to the
decrease in illumination per unit surface area as
f, is increased. This dominance masks the other
variations and was subsequently removed to allow a
closer analysis of the other terms. The results of
this second analysis are presented in Tables 3 and
4. B2An examination of these tables shows that for
constant illumination per unit surface area, ¥
still explains approximately 85% of the angular
reflectance variations. Further, Table 4 clearly
shows that the two most important terms are DRSPF
and ASDW. For the surfaces with low perturbation
densities, DRSPF is the relatively more important
while for the high density surfaces, ASDW is the
more important. This is not unexpected since the
low density surfaces are smoother and by definition
more specular. The large decrease in r“ when ASDW
is eliminated demonstrates the importance .of
considering shadows when calculating the bidirec-
tional reflectance.
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Tables S5 and 6 present the equivalent results
for the cylindrical perturbation surfaces. One
obvious trend can be observed in these tables.
That is, r? is very low for the low perturbation
density surfaces. This is particularly true for
TN = 150 and 200. This is easily explained and in
retrospect encouraging since for very small pertur-
bation densities, the total shadow area is
extremely small. Thus, a description of this sur-
face based upon shadow parameters cannot be ex-
pected to produce good results. However, for the
higher density surfaces, r? is higher and in most
cases ¥ explains more than 80% of the variance in
the measured bidirectional reflectance.

The effect of the shadow function is more
vividly shown in Table 6, which presents r? for the
calculations with individual terms removed from ¥.
When ASDW is removed from ¥, the value of r? is a
strong inverse function of TN. Conversely, when
the forescatter specular term DRSPF is removed,

r? decreases directly with TN. Thus, one import-
ant restriction of ¥ as derived in this investiga-
tion is demonstrated with these laboratory exper-
iments. " ¥ will not produce acceptable results
when used to predict the bidirectional reflectance
from smooth surfaces or surfaces with a low den~
sity of small perturbations.

B. FIELD EXPERIMENTS

The field reflectance measurements were
obtained from color infrared photographs. The
camera was mounted in a free swinging pivot plat-
form adjusted so that it always pointed vertically.
The pivot mount and camera were mounted on the end
of an Elliott Hi-Reach truck boom and positioned at
a height of 14.2 meters over the sample surface to
be photographed. Photographs were taken at pre-
determined times for which the solar zenith angle
was known. At each solar zenith angle, two photo-
graphs of the sample surface were taken, one with
five gray cards in place on the ground and one
without them. This provided a calibration for
each data photograph.

Since it was the aim of the boom truck photo-
graphs to simulate data obtained from a typical
aircraft remote sensing system, it was possible to
use the average of many photographic resolution
cell values to represent one airborne resolution
cell value. The ground resolution of the boom
photographs was approximately 4 mm. Although the
resolution of airborne systems varies over a wide
range, a resolution of 1.3 meters was chosen as
representative of a large number of high resolu-
tion medium altitude systenms.

Before the comparison between measured and
calculated bidirectional reflectance could be
made, it was necessary to estimate the required
surface geometrical parameters (TN, RM, HM). For
these detailed experiments, the parameters were
derived from measurements of orthogonal close-up
photographs obtained simultaneously with the field
reflectance data.

Complete statistical summaries of the compar-
ison between measured and calculated bidirectional
reflectance (without cosei term) are shown in
Tables 7 and 8. These show that independent of 6,
variations, the bidirectional reflectance functiofi
¥ explains approximately 80 to 85 percent of the
remaining reflectance variance for most of the
surfaces. Overall, the spherical perturbation
model appears to do slightly better, although the
differences could easily be due to experimental
error. It is significant that both perturbation
models produce equivalent results for alfalfa
which has a surface configuration not properly des-
cribed by either model. This confirms the hypo-
thesis that shadow produced angular reflectance
variations are dependent on average perturbation
size and density rather than on exact perturbation
shape.

A comparison of Tables 7 and 8 shows that the
two surfaces yielding the poorest results were
Buffalo grass and plowed ground. These two
surfaces both contain a very high density of
shadow producing perturbations, and if this is the
common cause of the poor results, there are two
possible reasons. Either the overlap function does
not adequately describe the shadow overlap for high
perturbation densities, or the reflectance contri-
bution from secondary scatter and skylight illumi-
nation is not adequately described. Errors in
either one of these terms will affect high per-
turbation density surfaces more than low density
surfaces.

An evaluation of the relative importance of
each of the major ¥ terms (i.e., DRSPF, DRSPB, CS,
DRS, and ASDW) was again performed for the field
experiment data. The r? results of this evaluation
are presented in Tables 9 and 10 for calculations
without the cosf, term. An examination of these
tables shows that r? increases slightly for not
only Buffalo grass and plowed ground but for all
surfaces when the shadow illumination constant CS
is set to zero. Thus, it can be concluded that
the estimation used to calculate the shadow area
reflectance contribution (equation 18) was in
error. 1In fact, for the conditions existing at
the time of field data acquisition (i.e., per-
fectly cloudless sky), the best results are
obtained by assuming that the shadow contribution
is zero.

Again, the field data analysis shows a drama-
tic decrease in r? when the shadow function is
eliminated from VY. In all honesty, it must be
stated that this change was so great that an
examination of the model algorithms was made in
search of errors which could have accentuated the
drop in r?. This examination revealed no errors
or biases which could have produced the change. A
detailed evaluation of complete outputs for each
surface showed consistent behavior of all terms
and residuals which is properly reflected by the
values of r2. Thus, it can be concluded that
independent of the cosf, term, BO to 85 percent of
the bidirectional refleCtance variance can be
explained by shadows. )
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VI. CONCLUSIONS

The results of this investigation demonstrate
the validity of correcting for bidirectional reflec
tance variations on the basis of changing suxface
shadow area. The perfomance of the shadow models
was evaluated as each of the major reflectance
terms were singly deleted. In general, some-
decrease in model accuracy is experienced when any
major term is deleted. However, a significant
decrease in accuracy always occurs when the shadow
function (ASDW) is deleted. 1Independent of the
illumination angle cosine term, the models without
the shadow function explain only 5 to 10 percent of
the bidirectional reflectance variance. Alterna-
tively, when any other major reflectance term is
deleted, the models still explain 80 to 85 percent
of the reflectance variance.

Further, it was established that shadow behav-
ior is not greatly dependent upon the precise shape
of surface perturbations. The two important shadow

" characteristics are 1) the total amount of shadow

per unit area at any given illumination angle, and
2) the proportion of this shadow area which is
observed at any given view angle. Both of these
characteristics can be described in terms of an
average perturbation density and average pertur-
bation size. The analysis of the laboratory
experiment data demonstrated that the estimated
value for the product of these two parameters can
be in error by 10 to 20 percent without signifi~-
cantly impacting the results. Further, the field
experiments demonstrated that the shadow behavior
of natural surfaces with irregularly shaped pertur-
bations can be accurately described in terms of
these two average parameters used in mathematical
models derived for idealized perturbation shapes.
The two models derived for different perturbation
shapes (spherical, and cylindrical) both produced
similar results when applied to a surface (alfalfa)
with perturbation shapes unlike either original
shape. Not only were the results similar for both
models, but they were also similar to the results
obtained for the exactly described laboratory
surfaces. Thus, it is feasible to consider an
operational correction function based upon shadow-
ing, using average estimated surface parameters
over broad areas of similar terrain.
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a)

Figure 1.

8,
i

Examples of shadows projected by spheres upon a plane surface when illuminated by a colli-
mated light source at three different incidence angles (0%, 30°, 60°).

0°

c) 6, = 60°
_J.

30 8w BP
b) Bi 30 c) ei 60.

a) eio°

Figure 2. Examples of shadows cast by irregularly shaped objects. From top to bottom objects in each
photograph are: 1) vertical cylinder, 2) cone, 3) pyramid, 4) cube, 5) rectangular solid, 6) case for
Polaroid print wiper, and 7) crumpled paper.

TABLE 1

SUMMARY OF RESULTS

SPHERICAL PERTURBATION SURFACES

TABLE 2

RELATIVE IMPORTANCE OF REFLECTANCE MODEL TERMS

SPHERICAL PERTURBATION, SURFACES'

* -
2 %R i RMS | AVG. 2 ™ | of DRSPFIDRSPB | CS | DRS ASDM
™ 1 o uean | var.| ®V-|crror|error r 0| =0 | =0 | =0 0
150 | .034 |12:25059.08) 56 o5 47 | .32 .9959 150 1.034 -9813.9923 |.9959 [.9959 .9945
11.93[55.03
200 | 038 |1-52155:031 0 ool 52 | 20 9904 200 | .034 .9734 |.9889 |.9901 |. 9907 .9887
: 11.42|54.07
300 | .034 [11T5059- 17 gq 6| 25 | .26 L9972 300 | .034 .9763 |.9953 |. 9965 |.9973 L9916
11.50{57.63
350 | .034 9.78142.10 41.05] .18 2 .9971 3_50 .034 .9843 |.9935 |.9967 }. 9962 L9860
9.57|40.13
250 | .or2 1152055770, o6l a0 | .21 9948 250 | .012 .9680 |.9936 |.9940 | 9954 .9895
11.3154.42
250 | 019 |12 121618600 ool 24 | L0a T 250 | .019 L9702 |.9952 |.9959 | 9973 ,9936
12.07|64.0%9
10.46]45.79
250 | .034 44.63| .23 | .16 .9959 250 | .034 .9805 [.9938 |.9959 | 9962 .9929
10.30]43.69
250 | .059 |11.19]52.56057,. 24| .42 | .41 9957 250 | .059 9836 | 9879 19952 | 9943 L9850
10.77150.16
250 | 082 [12.26(63.40(64. 01| .25 | .33 .9980 250 | .082 9788 | 9943 | 9975 9980 .9932
11.93|64.75

A1l calculations made with TN x RM?® {ncluding cosfy

A1l calculations made with TN x RM*in
varfation.

cluding cosey

varifation.

*Upper Value = Calculated Data Table Values = Coefficients of Determination r?

Lower Value = Measured Data
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SUMMARY OF RESULTS
SPHERICAL PERTURBATION SURFACE

TABLE 3

*2R 1 1R RMS AVG.
TN | e® | mgan ] var. | COV- krror | erROR o
150 | .034 21.04 7.59 6.82 f1.30{ .40 .8526
’ ‘| 20.63 7.207 :
.79 8.
200-] 03¢ L1074 235 g5 v L3e .8187
19.34 8.6Y
300 | .034 13-64 1193, 10 |1.38 .39 .8982
19.22) 11.51
16.13f 10:78
350 | .034 9.19)1.08 | .12 . 9082
16.00] 8.62
19.37] 9.87
250 | .012 9.00 |1.69 | .19 .8384
19.18] 9.84
.4 .39 ) -
250 | .01 [ 22 % 0%y sa fiss | .38 .8890
20.06} 14.41
250 ) .034 17-51) 8.6 7.7 112 ] e .8748
17.37| 7.78
250 | .059 | '8-79 9525 95 11,39 [ .59 .8929
: ) 18.20] 9.42
250 | .082 | 20-68/10.53)2 g7 [3.78 |1.20 .8962
19.48) 17.55

A1l calculations made
. cos8y variation.

"Upper value = Calculated Data

with TN x RM? independent of

Lower Yalue = Measured Data

TABLE 5

SUMMARY OF RESULTS
CYLINDRICAL PERTURSATION SURFACES

L T RHS | Ave. 2

T Yuean | var.| €O |error |ernon r
16.99) 6.68

150 | .55 3.16) 4.44) -.07 .3657
17.06f 4.10
17.15{ 9.66

200 [ .55 6.04| 6.43) -.14 4272
17.29] 8.83, ’
15.65(15.05

300 | .55 9.88)] 4.97] -.43 .6821
16.07] 9.52
14.09]15.65 ]

350 | .55 13.18] 1.98] -.18 .8767
14271267

250 | .19 }6.9612.80 10.68| 4.32] .n .6924
16.85{12.88

250 | .3 18841127115 65) 2.21) 03 .8258
16.81(10.81

250 | .55 [16:550112:51 15 130 5 36] -. 08 .8121
16.64[10.07

250 | .9¢ [16.93112.78(17 43] 1.91] .10 .8530
16.83]11.98

250 [1.30 |16-95|12.79)10.26] 2.69( -.17 [.7916
17.12110.39

A1l calculations made with TN x

coseéy varifation.

*Upper Value = Calculated Data
Lower Value = Measured Data

HN! independent of

TABLE 4

RELATIVE IMPORTANCE OF REFLECTANCE MODEL TERMS
SPHERICAL PERTURBATION SURFACES

m | e oRseF[oRsPE) CS | DRS. Asou
150 | .034 .3626].7149].6679).7918] .4391
200 | .024 -3835}.82411.7245|.8303 .1656
300 | .03¢ .5857).8686 ;7os§ .8175 499
350 | .034 .7653 .5355 .71287}.7327 .0584
250 ) .012 -13af.e21.6122). 7658 .2602
250 | .019 14;21 -9006|.7717].8956 1815
250 | .034. .56311.8342}.7427{.8162 1142
250 | .059 .721§ .7302{.6576].7314 .1847
250 | .082 .5403|.8789|.8615[.9418 .08s8

A1l calculations made with TN x RM? inde

variation.

Table Values = Coeffl:lents:of Determination r3

pendent of €os8y

TABLE ¢
RELATIVE IMPORTANCE OF REFLECTANCE MODEL TERMS
CYLINDRICAL PERTURBATION SURFACES
m | o oRseF okf;a s | orc | ASOH
150 | .55 2003 2620|1925 2213 L1969
200 | .55 .1602|.2993|.2518 . 3203 2816
300 | .55 .5188].6637|.5018].5092 .0530
350 | .55 .7750).8588 . 7495 |. 6850 .0008
280 | .19 6085 | 6529 |.5351 |. 5104 0059
250 | . 70857753 |.6575 |.6215 0086
250 | .58 .7144).7587 |. 6501 [. 6008 .0034
250 | .94 .7526|.8066 | 6893 |. 6562 L0010
250 {1.30 .6715|.7415 |.6116 {.5878 .0152

A1l calculatfons made with TN x HM? independent of
cosy varfation.

Table values = Coeffictfents of Determination r?
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TABLE 7

SUMMARY OF RESULTS
SPHERICAL PERTURBATION SURFACES

N .
. ) s | cov.| rms f Ave. 2
SURF-L & Lean | vae. ERROR [ERROR
AsPH. | eREENE20-38125-33026 13 4.39] .37 .8643
Loy 20.01{31.18
aseu.} rep 120-29125-1%124. 36 3.22] .93 .9098
Loty 19.36{25.91
20.15]24.99 |
aseu.} IR 25.96] 6.82] 1.33 .8426
Lot 18.83{32.01
acr. Loreent 2o F2L 2210 o el 2o 23 .8943
4.911 2.31
ace. | opeo L3078 es} a9 .37 | 7732
2.80] 1.12
avr. b o (10-351 7-99) 5 66} 2.09f .95 .8950
9.40]10.62
peun ) ereen P 88110170y oaf 3.6 .0 112
FIeeq 11.89[15.5¢
prwod men 11 T nsrf 2are] L2e L6617
FIELY 11.08}21.47}
15.86}15.63
PLND| IR 17.36) 7.18] 1.30 L7918
FIEL 14.47|24.28

Normalized data without cosey

*Ypper Value = Calculated Data
Lower Value = Measured Data

TABLE 9

RELATIVE IMPORTANCE OF REFLECTANCE MODEL TERMS

SPHERJCAL PERTURBATION SURFACES

TABLE 8

SUMMARY OF RESULTS

CYLINDRICAL PERTURBATION SURFACES

.

ORSPFfORSPE] €S | DRs ASOW

SURF.] 2 SEFIORSESL ¢S 1 O% o

ASPH.{ GREEN .8805{.81491.9080).8972 L1194
Lot !

ASPH.] RED .9164].88261.9408[.9264 L0802
Lot

AsPH.] IR -7902).8410¢.9114]. 8838 L0572
Lot

ALF. ] GREER .8877].9006).8987).9361 | 0926
ALF. | rep .1782}.7738(.7774 ). 8336 L0582
atF | IR .89241.8983].9091}. 9254 0202
PLND § GREEN] .7867].7297}.7983{.8518 L0571
FIELQ F

PLWD ) RED .6892{.6293).6899(.7286 L0493
FIELY

PLED| IR .7936}.7722] .8612{.8405 0331
FIELY ‘

Normalized data without cosey

Table Values = Coefficients of

Determination »?

[ A1) RMS | AVG. 2
SURFE & Tyean | var.] €O [erno [ERROR T
11.65116.23
k.. foreen] 14.16} 4.26} -.93 7968
GRASS|
12.57[15.49
k.F. ] Rep | 9.45}11.201 9 93¢ 2.40} -.56 .8188
GRAS 10.01}10.75
k.F. } 1r [13.87121.89117 73f 4.04] -.14 . 8156
GRASS 14.0117.61
ALF. | green] 4-82] 3.671 3 51 76} .51 L 8708
5.33) 3.86
atr. ] rep | 298] 1-961 g 39l 36] -.06 . 7905
3.05] 1.68
9.75}13.33
AtF | IR 14.17} 2.26] -.47 L8831
10.22[17.05
gur. | creey °-25[15-99 14.46| 8.63)-1.53 6798
GRASS 10.78[19.22
.03]12.59
gur. | rep | 503 11.64} 9.77}-1.13 5604
GRASS 9.16(19.18
13.25[28.31
632§g IR 23.94113.75{-1.41 6452
14.66131.37

Normalized data without cosdy

'Upper Value = Calculated Data
Lower Value = Measured Data

TABLE 10

RELATIVE IMPORTANCE OF REFLECTANCE MODEL TERMS

CYLINDRICAL PERTURBATION SURFACES

suar. 2 nfgpr ofgpa Sg ggc Afgu
K.F. | GREEN, .7961}.7652{.8389].7768 L0174
GRASS|

x.F. | rep .8186{.8024} .8468].8075 .0170
GRASS|

X.F. | IR .8069].7907}.8617].8154 L0332
GRAS S|

ALF. | GREEN .8725}.8709}.8761].8705 1050
ALF. | RED .79571.7898].7943].7729 1453
ALF. ! IR .8952|.8719].8976].8803 0669
Byr. | GREEW .70211.6490|.7290}.6614 0006
BRASS :

BuF.| RED .5858.5332(.6055}.5355 .0087
ferass

BUF.1 IR .6769].6005}.7336|.6255 0005
JGRASS

Normalized data withaout cosé,

Table Values = Coefficients of Determination r?
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