Reprinted from
Symposium on
Machine Processing of

Remotely Sensed Data

June 21 - 23, 1977

The Laboratory for Applications of
Remote Sensing

Purdue University
West Lafayette
Indiana

IEEE Catalog No.
77CH1218-7 MPRSD

Copyright © 1977 IEEE
The Institute of Electrical and Electronics Engineers, Inc.

Copyright © 2004 IEEE. This material is provided with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of any of the
products or services of the Purdue Research Foundation/University. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

A TECHNIQUE FOR REAL-TIME DATA PREPROCESSING

MARIO R, SCHAFFNER
Massachusetts Institute of Technology

ABSTRACT

A processing system is presented that implements
simultaneously the efficiency of the special-pur-
pose processor and the total applicability of the
general-purpose computer — characteristics com-
monly though of as being mutually exclusive.

The solution adopted is that of specializing the
machine by programming the hardware structure,
rather than by adding software systems to it.
Data are organized in circulating pages which
form a plurality of local dynamic memories for
each process. Programs are made up of modules,
each describing a transient special-purpose
machine. Applications to real-time processing
of radar signals are referred to.

I. INTRODUCTION

Remotely sensed data, in raw form, often
constitute an exceedingly large and redundant
data set with respect to the application needs.
Therefore, on-site preprocessing would be highly
desirable in order to tramsmit, or to record, a
smaller amount of data. Because characteristics
of the raw data might be crucial for some appli-
cations, this preprocessing needs not to be a
mere data reduction process, with undesirable
loss or degradation of information, but rather
it should produce appropriate data transformations
that, while reducing the amount of data, keep the
relevant information undegraded for the largest
number of applications. It should be pointed out
that there is no unique way to specify such
transformations, and continuing development is
expected in this field.

For many applications which require quanti-
tative data, or in which calibration and stabil-
ity are of concern, digital processing becomes
mandatory. Sometimes, equipment size and power
are also relevant. In these cases, special
digital processors constitute an efficient
golution, yet this solution necessitates new
design and equipment whenever a different pre-
processing is required. Today computer avail-
ability indicates as a more appropriate solution
the use of gemeral-purpose computers, with
specialization obtained through software.

However, many complex real-time processings
needed in this context.are not possible by means
of affordable general-purpose computers, a fact
which in turn makes the expectation of generality
deceptive, Moreover, the development of software
systems constitutes sometimes a large task in
itself. Also, frequent processings are in the
class of pattern recognition, which typically
requires a large degree of parallelism, and which
often necessitates a variety of strategies that
can be formulated only with difficulty in a
single programming language.

Notwithstanding what one might think at first,
in this paper we question whether the efficiency
of the special-purpose processor and the generality
of the general-purpose computer are necessarely
mutually exclusive. In the context specified above,
we present a solution to this problem of conflicting
goals: specializing the machine by programming the
hardware structure, rather than by adding software
systems to it, The desirability for such an
approach has certainly arised in several contexts;
in some sense, analog computers were taking the
same direction., What apparently has impeded the
development of this approach is the lack of a
language suited for this task; that is, a language
that permits both (1) an effective and efficient
representation of the processes in terms of
computational structures and data structures,
and (2) a direct implementation of these struc=-
tures by means of suitable hardware,

In the next section, a language which has these
two characteristics is presented., In section III
more details are given on the corresponding
hardware, and in section IV aspects of the
programming are discussed. In section V, an
example is given of a preprocessing in a specific
field of application. References are referred to
for more extended descriptions of this processing
approach, and of the applications made.

1977 Machine Processing of Remotely Sensed Data Symposium

198

II., THE LANGUAGE

A. OUTLINE

This language departs from the typical form of
commands and declarations, connected with a phrase
syntax. It has instead the form of abstractions
of special-purpose machines that one might wish to
create for the various tasks.

There are two basic modules: (a) data blocks,
called pages, each of which contains the data
pertaining to a process or machine; .(b) program
blocks, called description of structure (DS), or
states, which describe instantaneous special-pur-
pose machines.

Processing is obtained by appropriate unions
of blocks of one type with blocks of the other
type. This gives a frame for modeling parallel
activities, independent or concurrent. Also, it
permits to implement different strategies by means
of machines specifically designed, and thus
efficient.

B. THE BASIC FRAME

To simplify the description of special-purpose
machines, a common basic frame is assumed. This
frame refers to activities which are common to all
processes, such as input, output, data transforma-
tion, and storage; however, no rigid constraints
are imposed. The frame has the form of the pipe-
line general structure of Fig. 1, comprising
several stations through which data blocks (the
pages) circulate. In one station, the assembler,
new data can be acquired; accordingly, the input
sources are connected to the assembler. In another
station, called programmable network or PN, data
can be transformed., In a station called packer,
data can be routed elsewhere; accordingly, the
output devices are connected to the packer. In
the page memory, the data blocks rest, im accor-
dance to the configuration given to this memory.

C. THE PAGES

The working data set of a process, that is,
the data presently used by a process, or a portion
of a large process, forms a.data block which moves
as a whole through the register arrays § of the
frame indicated in Fig. 1. Such a data block is
called a page. The pages are generated, work, and
disappear as described in the sequel. The role of
these pages will be commented in subsection G.

D. DESCRIPTION OF STRUCTURE (DS)

To perform a specific process, a specific
structure has to be given to the frame of Fig. 1.
The description of this structuring of the frame
is divided in the following four components.

1. Input prescription I. In the assembler,
specific connections with the input sources have
to be activated if new data have to be transferred
into the page presently in the page array ﬂa .

The prescription of such data acquisitionm, in
some code, is indicated globally with the symbol I.

Beside the identification of outside sources,
prescription I may also give numerical constants
as new input data,

2, Data transformation F. If the working set
of a process (the page) is simultaneously available
in the register array {y of PN, it is no longer
necessary to decompose - the process into a sequence
of instructions (instruction = opcode + addresses).
It is more appropriate to view the process as a
(minimal) set of global transformations for the page;
by global transformation is meant here what can be
done at any given time with the data presently in
the page. To implement such global data transfor-
mations, a network of processors which can assume a
variety of operational configurations is used. For
this reason, the station where data transformations
are performed is called programmable network, or PN,
We indicate globally with the symbol F the code
needed by PN for implementing such data transfor-
mations.

3. Tramsition function T, When we delineate
a page transformation as a part of a process, it is
also necessary to indicate which other transforma-
tion should be next for the page. Given the level
of activity performed by a page in ome circulation,
a predetermined succession of Fs (like a sequence
of instructions) will not be the typical occurrence.
It is more convenient to consider after each F a
transition function for establishing the transfer
to one of several other data transformation F, in
response to results obtained in the page, or to
outside signals, The same programmable network is
used for implementing this transition function,
immediately after the execution of a data transfor-
mation F. We indicate globally with the symbol T
the code needed by PN for performing such a
transition function.

4. Routing R. In the packer, specific connec-
tions have to be activated if specific data in the
page, presently in the array , are routed to
specific output devices. The prescription of such
routings, in some code, is indicated here globally
with the symbol R, Beside routing data elsewhere,
prescription R may also indicate the erasing of data
in the page. Routing can be made transition depen-
dent, in the sense that different actions are per-
formed depending on the outcome of the tramsition
function T,

From the above, we have arrived to the description
of a complete processing structure symbolized in the
form of a quadruplet [IFTR]. It includes input con-
nections in the assembler (component 1), data trans-—
formations and transition functions in the program-
mable network (components F and T), and output con-
nections in the packer (component R), We call such
a quadruplet a description of structure, or DS. .
The structure described by a DS is an instantaneous
structure, and to implement a process we generally
need several such DSs.

E. STRUCTURE AND DATA MACHINES (SDM)

In the frame of Fig., 1, a processing activity
is implemented by relating a page (a data set) to a
quadruplet (description of structure)., In general,

1977 Machine Processing of Remotely Sensed Data Symposium

199

PROGRAM
STORAGE

[IFTR] key
1 \
input - assembler -t
sources
o
EE]
: b {
v i
] .
5 D l’:\ﬂfj page Ifun::m:)nol
1 N t
2 Q" D E:JL:] PN memory l| memory
- programaoable :
network |
> !
i]
o b
Q,
output et poccker
devices |-
Figure 1 -~ The basic frame for describing processes

there will be many pages circulating in the frame,
and many quadruplets in a program storage (Fig. 1).
To implement the pairing of pages with quadruplets,
the pages carry a word called the key, The key is
given the label of a quadruplet existing in the
program storage. Everytime a page enters the assem-
bler, it acquires a quadruplet in response to the
content of its key. Component I of the quadruplet
is used immediately in the assembler for acquiring
new data. Component F is used for transforming data
as soon as the page is transferred into PN, Compo-
nent T, also used in PN, may change the content of
the key, so that at the next circulation the page
may acquire a different quadruplet. Component R is
used for routing data when the page is transferred
into the packer. In this way, each page, at each
circulation, implements a particular processing
activity. .

As said above, each palring of a page with a
quadruplet is determined by a previous outcome of
the transition function T; this outcome depends on
the results in the page, which in general depend
also on the input data. This mechanization makes
it possible to organize large varieties of activities
which self-develop and change in time., In order to
have a criterilon for distinguishing these activities,
we use the notion of Structure-and-Data Machines, or
SDM; each SDM being implemented by a page (the data)
through a pattern of pairing with DSs (the structure
described by the quadruplets). Denoting specific

patterns through DSs by indexed brackets, we can
write symbolically

page, + [DS]m — SDMkV

To create a page, it is sufficient to insert a
key into circulation; this can be implemented either
as an initial action of the operator, or as routings
by already existing pages. A particular outcome of
the transition function makes a page to disappear,
The same DSs can be shared by many pages; a page
can go, at different times, through different paths
of DSs. Each SDM is equivalent to a special-purpose
machine; a large number of such machines can simul-
taneously execute processing on the same or differ-
ent data in the frame of Fig. 1.

F. FACILITIES

the SDMs outlined above are transient machines,
created at specific moments for performing single
tasks. To make the work of the SDMs concurrent
toward larger tasks, several facilities are provided
in the frame of Fig, 1. - :

Auxiliary page array. Exchange of data among
pages is a requirement for a cooperative work of
SDMs. For this purpose, PN is provided with an
auxiliary page array Q& ; when a page is imn PN,
it can transfer some ~of its data into Y ; some
other pages, when in PN, can acquire or exchange
those data from ! . The data in Qﬁ are not
removed during the flowing of the pages in PN,

1977 Mcchine Processing of Remotely Sensed Data Symposium

200

Driven transitions. Also messages can be stored
in ﬂﬁ s a very useful feature is the transmission of
a key, through Qﬁ , by part of one page to specific
other pages; in these pages, the new key overrides
the outcome of their transition functions. In this
way, it is possible for a page to direct the behavior
of other pages. A transition so produced will be
called a driven transition.

Page memory. The pages are stored by the packer
into the page memory as blocks of data. The assem-
bler acquires pages from the page memory as blocks
‘of data. The input-output discipline of the page
memory is an issue which pertains to the work of the
entire system, rather than to the single SDMs.

If there is no relation among the work of the several
pages, or if this work requires a simple sequential
order of the pages, the simplest structure for the
page memory is that of a FIFO discipline; that is,
the assembler automatically receives one page after
the other, in the same order in which the packer
produced those pages. This is the configuration of
the page memory for the applications described in
section V, Different classes of problems may require
different structures of the page memory; these can
be activated when needed by means of appropriate
codes routed to the memory control.

Functional memory. In modeling complex processes,
a storage common to all pages is often appropriate,
However, in most cases in which data are stored
outside the page, some simple operation is actually
required, such as accumulating a sequence of data,
storing the maximum (or minimum) value in a sequence
of data, or counting the occurrences of a set of
values (e.g., to produce a distribution). For this
purpose, a functional memory is provided in the frame
of Fig. 1. Every SDM can route some data of its page
into specific locations of the functional memory,
and the routing prescription specifies the function
with which the data should be acquired, The func=
tional memory provides for the execution of these
functions, thus relieving the SDMs of many clerical
tasks.

G. THE MODELING OF PROCESSES

A process is modeled as the product of the
activity of SDMs, In the simplest case, an SDM
implemented by one page and one DS may suffice,
In general, a large number of SDMs, implemented
by pluralities of pages and DSs will be required,

The agents of the activity are the pages.
Pages are created when specific tasks are needed;
with circulation through the structure of Fig. 1,
the pages keep their data working sets updated;
data can be acquired from input sources, from
other pages, from the functional memory; data can
be routed to output devices, to other pages, to the
functional memory; the pages provide for the compu-
tation; any page can take control of other pages;
when its task is accomplished, a page normally
disappears. The outcome of the page activity may
be found in the forms of results in output devices,
intermediate data in the functional memory, and
newly generated pages in circulation.

All such activities are accomplished by the
pages in accordance to the SDMs that happen to be
implemented. The SDMs are implicitely described
in the DSs, but what actually takes place may
strongly depend on the input data and consequent
results, These different results may produce
different use of the DSs, often iteratively in
time or in space (arrays of pages), and sometimes
recursively. The main mechanisms for building
these dependencies are the transition functioms,
the transition-dependent routings, and the self-
generation of pages.

As indicated in the introduction, this language
applies equally well to the abstract description
of processes (in a structural form), and to the
description of configurations to be assumed by a
physical machine for implementing the described
processes. In the next two sections, some points
are discussed on these two phases.

III. COMMENTS ABOUT IMPLEMENTATION

The frame of Fig. 1 is conceived in a space-time
domain; therefore, it is suitable for direct physical
implementation, for instance, with digital technique.
In effect, Fig, 1 represents an architecture for a
computer, and the quadruplets described in section II
constitute the machine language for such a computer.
The main characteristics of this architecture are
the organization of data in pages constituting
working sets for the processes, their automatic
circulation through a pipeline series of statioms,
and the use of structure descriptions for special-
izing these stations by the pages themselves;
accordingly, a physical implementation working in
this way will be called a Circulating Page and
Structure (CPS) machine.

The implementation of a CPS machine is discussed
elsewhere.ls This work started from the need of
processing radar signals in real time, in ways that
could easily be changed to follow developing research.
After several special processors based on circulating
words related to independent processes, at the Radio
Meteor Project of the Smithsonian Astrophysical
Observatory, Cambridge, Mass., and at the Weather
Radar Project of the Massachusetts Institute of
Technology, the first general-purpose machine of
this type, called CPL 1, was constructed around 1969,
and put in operation at the Smithsonian meteor radar
station in Havana, I1l. in 1970.2 Then, the machine
was brought to MIT and used for experiments of real-
time characterizations of weather radar echoes,

From these experiences, the design and the construc-
tion of a second machine has started, and it now
proceeds at the National Center for Atmospheric
Research, Boulder, Col.

Only a few comments are made here from the view-
point of processing in real time large quantities
of data, The pipeline structure of Fig. 1 leads
to an orderly organization of the processing for a
continuous flow of data from input sources to

1977 Machine Processing of Remotely Sensed Data Symposium

201

output devices. Because of the allocation of data
in circulating pages, there is basically no use of
addresses, a fact which facllitates a fast execution
as needed for real-time processing.

It can be noted that this modularity of data
blocks and program blocks makes multiprogramming
feasible without overhead. Each transfer of a
page can be viewed as an interrupt, in which the
status of the process is automatically held by the
key of the page. Each page may very well belong
to a different program; each program can be imple-
mented by many pages. In either case, there is no
need of scheduling systems, with consequent overhead
in execution time and program complexity.

These benefits, as well as several others, derive
from the fact that the processing is page driven.

IV. COMMENTS ABOUT PROGRAMMING

In the language of section II, a process is
completely described by the DSs. For instance,
a process may be implemented by one or more pages
pairing sequentially with DSl DS2 DS » DS3, DS
DSZ’ DS,; for such a process, the program consis%s
sifiply of the set DS DS,, DS,, being the
sequence of pairing indicated by the components T
in the DSs, and the number of pages by their
components R.

These programs are modular in terms of DSs;
every program consists of sets of DSs related to
each other by transition functions. Such a struc-
ture is operatively equivalent to that of the
finite-state machines defined in automata theory;
for this reason, we will refer to the DSs also as
states, and we will view the programs as state
diagrams. The state structure of these programs
can have utilizations similar to those of finite-
state machines, such as recognition of patterns,
or memorization of past events. At the same time,
the text within the states (components I, F, and
R of the quadruplets) permits to handle a contin-
wous flow of data, and to produce computation on
that data.

Because of all the above, the representation
of these programs is in a particular form of state
diagram. States are indicated as encircled domains
(see Fig. 3). The data transformation F and the
transition function T are indicated inside these
domains, above and below a horizontal line, respec-
tively. The outcomes of the transition functions
are indicated by arrows connecting the states.

The input prescriptions I appear implicitely as
input data in the expressions of F and T. Routings
are indicated outside the encircled domains, along
the paths followed by the page.

The state diagram is the medium used by the
user for constructing a program. At the end of
the programming work, the elements of the resulting
state diagram are expressed in corresponding codes
of the CPS machine available. Because the work of
a CPS machine follows the same mechanization
expressed in the state diagram, the production of
these codes represents a simple clerical task.

In this situation, the notations used in the state
diagram can be completely arbitrary. In Fig. 2,

as an example, some working notations are shown
which will be used in the program described in
section V. A full set of notations 1is described in,3

In the software domain, we can distinguish two
sectors: the programming language, which provides
the user with the facilities for prescribing specific
processes; and the packages of code, to which various
activities relate, such as debugging, system manage-
ment, and program maintenance, In the CPS approach,
these two sectors are not separate to the extent as
they are conventionally, because of the identity of
structure between the user model of a process and
the actual work of the machine. Here a package of
code is basically a particular transliteration of
the items composing the state diagram developed by
the ugser., It is a situation similar to that of a
program written in assembly language, except that the
structure of an agsembly program is quite far from
(often it has little to do with) what the user had
originally in mind. This similarity between the
user model and the machine execution is particularly
helpful in the phases of debugging and modification
or extension of programs.

There are two forms for describing parallelism
in this language. One is of simultaneous execution
of operations in different variables of the page;
an example is in state 4 of the program in Fig. 3.
The other form is a virtual parallelism produced
by a plurality of pages pairing with the same DSs;
the program in Fig. 3 makes use of this parallelism
also.

V. EXAMPLE OF REAL-TIME DATA PREPROCESSING

As an example of application of this processing
approach, a simple program is described which has
been used with the CPL 1 machine in experiments of
real-time preprocessing of weather radar echoes,

The context 1s monitoring a storm activity within
the radar range. Two types of information are of
interest, the total precipitation and the trend of
the storm. Estimates of precipitation can be derived
from point-by-point values of the radar echoes; the
trend can be inferred from appropriate character=
izations on the echo patterns. The echo values need
to be measured everywhere and centinuously, whereas
the characterizations need to be determined only at
periodical intervals of time, Methods of character-
ization have been described elsewhere;-s here a
program for the recording of distributioms of echo
intensity is described in detail.

Weather echoes are highly fluctuating because of
the motion of the water droplets; therefore, several
(e.g., 32) radar returns need to be averaged at each
point in order to obtain meaningful measurements.
Moreover, because these measurements are collected
automatically without screening by operators, non~
weather echoes, such as echoes from the ground,
either in line of sight or through anomalous propa-
gdtion, should automatically not be accounted,

1977 Machine Processing of Remolely Sensed Data Symposium

202

To discriminate ground echoes, a method is adopted 4
which is based on the different fluctuation exibited
by weather and ground echoes.

To facilitate the data analysis, the measurements
are collected in the form of areas covered by echoes
within different levels of intemsity (e.g., 15)
every two minutes,

To accomplish all these functions, the system
of SDMs represented by the state diagram of Fig. 3
is used. There is one SDM implemented by one page
and states 1-3 which controls the entire activity;
and a plurality of SDMs, implemented by a sequence
of pages (one per range point) which follow states
4 and 5, for performing the computation. All pages
circulate in synchronism with the pulse repetition
frequency of the radar. First the activity of the
control page is described, and then that of the
computation pages.

To initiate the process, a page is inserted
into circulation,in state 1. In this state,
variable A acquires continuously the current azimuth
az of the radar antenna. At each 2-minute signal t
from a digital clock, the control page transfers
from state 1 to state 2; at this transfer, by routing,
a sequence of computation pages is produced, and
variables M, N, Q, and the distribution in the
functional memory are cleared.

In state 2, the page remains idle for 31 circu-
lations, and then routes a driven transition to
state 5 for the following pages. When the current
azimuth becomes equal to variable A (which occurs
at the completion of an antenna rotation), the page
transfers to state 3, and routes a driven transition
to state O (disappearing) for the other pages.

In state 3, variables A, B, and C of the page
acquire the values in M, N, and Q, respectively, of
the functional memory; these values are normalized
by means of given constants a, b, and ¢, and then
are routed to the output, Also a command for tramns-
ferring the content of the distribution to the output
is produced. The page returns to state 1, except
if a stop signal is present, in which case also the
control page disappears.

The computation pages are generated in state 4.
In this state, variable A computes at each circula-
tion the absolute value of the difference between
two consecutive digital samples s of the radar echo
at the range point to which the page belongs,
Variable B accumulates in time these differences,
and variable C accumulates the values of the
samples s,

Every 32 circulations, these pages are driven
to state 5 by the control page. In state 5, C is
divided by 32, so that it represents a mean echo
value, Then the page returns to state &, but fol-
lowing different paths, and thus producing different
routings, in dependence on the results. obtained.
If the mean echo (variable C) is above a threshold h
(assumed above the noise value), and the accumula-
tion of the differences (variable B) also is above a
threshold g (chosen for optimum ground-echo discrim-
ination), the echo value is routed to a distribution

Capital letters

A,B,C, vor denote variables in the
page
Capital letters

M,N,Q, ** denote variables in the
functional memory

Lower case letters

a,b,az, denote input data
: P

IN THE DATA TRANSFORMATION
Parallel operations A(1#1) « A(d) + 2
ABC } 2As B(i+l) « B(1) + A(1)
C(i+l) «+ c(1) + s
i denoting values before
operation, and i+l after -

IN THE TRANSITION FUNCTION

. dot indicates the path

@ followed when test is
true

P, the page circulates n
times in state k, before
following the transition
N oot Al function described in k

or state 0 the page disappears

(after routing executed)

IN THE ROUTING

A B variables A and B are routed to
output
Ao B, variables A and B are cleared

variable A in the page is routed

to variable M in the functional

memory with function accumulation
(M « M+ A4A)

A~ M(I)

in the functional memory a vari-
C =+ distr able labeled with the wvalue of C
is incremented by one

variable N in the functional

N(incr) memory is incremented by one
drt k driven transition to state k
* for the following pages
n Pag(k) n pages are generated in state k
Figure 2 - Notations used in the state diagrams

1977 Machine Processing of Remotely Sensed Data Symposium

203

i
!

pages

4
A« |A-s)
n Pag (4) BCEAs
O-~distr ({9) A+s
0-+MNGQ
|
|
drt &
C <« 0/32 g'
A<+ s * Q(incr)
C>h [1]1
8>g 1110
C —~distr
C -+ M(E)
N{incr)
distr{out)
Figure 3 - State diagram of a real-time preprocessing of radar signals
function, and to an accumulator M, both in the it is the area weighed by the echo intensity at
functional memory; also an increment is routed -each point; it will be referred to as the integral,
to variable N in the functional memory. Variable Q gives the total area covered by echoes
If the echo value in C is above the threshold, recognized as not pertinent to weather targets,
but the accumulation B of the differences is From the distribution, the areas with echoes
below the threshold g, that is, the echo very within given intensity intervals are obtained.
likely is not from weather targets, an increment
is routed to variable Q in the functional memory. The state diagram of Fig. 3 gives an easy
If both C and B are below their respective visualization of the entire process, and at the
thresholds, the page transfers to state & without same time provides all the elements necessary
routings to the functional memory. In all cases, for the execution of the process by a CPS machine,
variables B and C are cleared before the page The actual codes for the CPL 1 machine differ
reaches state 4 (routing indicated beside the slightly from the elements of the state diagram
state circle). of Fig. 3; nevertheless, they are contained in
two punch cards.
In this way, variables M, N, Q, and the
distribution in the functional memory gradually Given the readability of a program in the
build up global results, The computation pages form of a state diagram, and its direct corre-~
do the work at each point; the functional memory spondence with the machine activity, modifications
assembles the data; and the control page provides and extensions of a process are tasks easy to
for the synchronization and the recording of the actuate and to check. These are practical
final results. The data produced are as follows. consequences of the modularity in data blocks
From variable N, an approximated measurement is . (the pages) and program blocks (the states)
obtained of the total area covered by precipi- commented in sections III and IV, Some compari-
tation, From variable M, a quantity is obtained son of program complexity and execution Eige with
which can be related to the magnitude of the storm; respect to conventional programs are in.*?

1977 Machine Processing of Remotely Sensed Data Symposium
204

In Fig. 4, an example of data obtained with
this type of preprocessing 1s given. It refers
to a storm which moved from the northwest to the
southeast of Boston during the night of December
8, 1974, and which changed from snow to rain,
The upper part of the figure plots the data
recorded with the program of Fig. 3, running
automatically in absence of personnel. The lower
part of the figure reports some of the real-time
characterizations made by an operator during
interruptions A, B, C, and D of the automatic
data collection,

The general trend of the storm is shown by
the total covered area and the integral curves.
the curves plotting the area of the single level
intensities are of interest for amnalyzing the
phases of the storm. In the development phase
(e.g., at 17.30), areas of strong precipitation
exceed areas of weak precipitation. In the decay
phase (after midnight), the areas of the different
levels form a regular monotonic sequence.

The characterizations consisted of measuring
in selected regions the area A covered by precip-
itation, the mean intemsity M in this area, and
the mean echo gradient G of this echo pattern.
Of particular interest is the fact that, from
the value of the gradient, inference can be made
on the type of precipitation, such as snow,
convective shower, and stratiform rain.

The numbers which appear in the lower part of
Fig. 4, obtained by processing radar signals,
show a progressive increase in the value of G
during the 1life and the movement of the storm.
From observations made during two winters, this
fact could be interpreted as a change of the
precipitation from the form of snow to that of
rain, The actual changes that occurred in this
storm were in accordance with the inferences
from these measurements.

.Also these characterizations can be automated
and included in a single, comprehensive monitoring

program, .on the line of the small one here described.

For defining appropriate sets of parameters te be
derived from the raw radar signals, an extensive
analysis is necessary on the correlations between
characterizations that can be made on the echo
patterns and relevant characteristics of the
associated meteorological events.

VI. CONCLUSION

The efficiency of the special-purpose processor
and the flexibility of the gemeral-purpose computer
are not mutually exclusive. When these two charac-
teristics are both simultaneously available, large
quantities of data can be processed efficiently to
produce small amounts of data with a high informa-
tion content; and the processes can be readily
transformed to follow changes in the requirements
or developments in the understanding of the
related physical phenomena,

ACKNOWLEDGEMENT

I wish to thank Frank Marks for the help in
taking the measurements, and for the several
discussions. This work has been supported, at
different times, by the National Aeronautics and
Space Administration under contracts NASr-158,
NSR-09-015-033, and NASW-2276.

REFERENCES

1. Schaffper M R (1971), "A Computer Modeled after

an Automaton", in Computers and Automata,
Polytechnic Press, Brooklyn, N.Y., pp 635-650.

2, =--- (1972), "Computers Formed by the Problems
rather than Problems Deformed by the Computers",
COMCON Dig., pp 259-264,

3. -=-= (1974), "Research-Study of a Self-Organizing

Computer", Final Report, contract NASW-2276,
NASA.

4, ~—- (1976), "On the Characterization of Weather
Radar Echoes", Prepr. 17th Radar Meteor., Conf.,
Amer. Meteorol. Soc., Boston, Mass,., pp 474-485,

1977 Mcxchine Processing of Remotely Sensed Data Symposium

205

P A T T

Deceuber 8, 1974
Cambridge, Mass. intensity l
’ level dBz 13 x 10*
WR-66 radar (10 cm)
. I 16 12
.) \ 2 21 '
integral . T
g 3 s | 24 3
5 10 5
4 27 E’
5 30 9
6 3
Ao total covered area 33 T8 x
4] - 7 36 o4
h x10° IS 8 40 xto® |7
1y —_ | ©
i T g 8° -
i 4 o8 52
! © 2 og €L @
4 » 23 _ 4 c
Wl 3 S x
oo x segeq3
T - o x
o q; ~—
2
Pl -
i ©
[o
L
-y
h-l
o
>
>
o
[*]
o
o
5

s mmm ettt e _cwrmm === ~ oy

.~ 4

(% 2o 2o e S 0 L A B S S e G e St A St S S B A A e et B l:-[.‘T-T‘-I‘I_;I-T T
1700 1800 1900 2060 2100 2200 2300 2400 0100 EST
Samples of the analyses made during the interruptions
A B C D 150 Km
‘ N N N N f
j 2 D
! % .
I A = 6000 A = 6800 A = 2370 A = 1320
total M= 21,5 | M= 23 | M=22.5 | M= 20
G = 5.5 G = 5.2 G=17.9 G=9,5
2 A = 1400 A = 1730 A = 2600 A = 1730
southern edge M = 19 2 M=22.5 2 M=22 2 M=23,5
G=6.3 G = 8.6 G=28.3 G= 9.3
3 A = 1830 A = 3630
center of M= 21.5 3 M= 25
the storm G=4.7 G= 3.8 A = covered area (Km x degree)
4 A = 830 A = 2590 M = mean intensity (dBz)
northen edge M-13 4 M= 24
G=7.8 G =7

G = mean gradient (dB/Km)

Figure 4 - Automatic (unattended) monitoring of a storm that crossed Massachusetts during the night of
December 8-9, 1974, with sporadic interruptions by an operator for particular characterizations,

1977 Machine Processing of Remotely Sensed Data Symposium

206

MARIO R. SCHAFFNER

Received the degree of Dr, Ing. in Electrical
Engineering from the University of Pisa (Italy).
Research at the Microwave Center of the Italian
National Research Council; work on multi-channel
radio links at Magneti Marelli Co., and at

FACE Standard Co.; teaching radar engineering

at the Italian Air Force School.

In 1961, came to the United States with a NATO
fellowship; works at the Massachusetts Institute
of Technology, Harvard College Observatory, and
Smithsonian Astrophysical Observatory in
developments of processing systems for research
projects. Presently, with a fellowship at the
National Center for Atmospheric Research,
Boulder, Col,.

1977 Machine Processing of Remolely Sensed Data Symposium

207

