COMPUTER LOCATION OF DRAINAGE NETWORKS BY AN INTERACTIVE LINE FOLLOWING ALGORITHM

L. MONTOTO
IBM Scientific Center, Paseo de la Castellana, 4 - Madrid 1, Apartado 179, Spain

An algorithm is described designed to locate and connect linear features with identical characteristics on multispectral images. The input is a map of magnitudes \(PM(i,j) \) and line orientations \(PR(i,j) \) produced by an edge and curve detection algorithm which uses a window of 5x5 pixels centered at every pixel belonging to an edge and looks for a preferred line in that pixel along 0°, 45°, 90° or 135° (\(PR=1, 2, 3, 4 \). \(PR=5 \) means indetermined orientation). Noisy results coming from the local line detection operation are avoided using a radiometric corrected input image on a combination of bands together with an appropriate threshold.

To run the algorithm the user selects a starting pixel \(k \) and gives a sign to the value \(PR_k \) to choose a direction \(D_k = 1, 2, \ldots, 8 \) for \(D_k = \pm PR_k \). The algorithm looks for the next pixel \(k+1 \) in the direction \(D_k \mod 8 \) (\(h=0, 1, 2, 3 \)) using the criteria:

1) \(PM_{k+1} = PM_k \pm \epsilon \) (being \(\epsilon \) chosen by the user) and 2) Distance \((PM_k, PM_{k+1}) \) be a minimum. Being \(PM_k > 0 \) and \(PR_k = n \) (\(n=1, 2, 3, 4 \)) the \(k+1 \) pixel could have \(PM_{k+1} \geq 0 \) and \(PR_{k+1} = m \) (\(m=0, 1, \ldots, 5 \)) giving rise to three different cases that will be discussed. Range of neighborhood is fixed by the user in a compromise between getting good results in broken lines or a pitfall if the algorithm jumps from one chain to other.

Having the values \(PM \) and \(PR \) in memory the algorithm lasts 30 to 70 ms/pixel in the final chain (in PL/l for an IBM 360/65) depending on degree of discontinuity and number of nodes. Results obtained from LANDSAT images to locate the drainage network of the Guadarrama river in Central Spain will be presented.