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A LEAST-SQUARE ERROR APPROACH
TO LANDSAT IMAGE CLASSIFICATION

ALBERT Y. HUNG
TRW Defense and Space Systems Group

I. ABSTRACT

Nonparametric classification methods are often
useful in discriminating features or substances
even when the functional term of the underlying
distributions are unknown to the analyst. One such
case is that of geological features, largely devoid
of vegetation. Basically, nonparametric classifi-
cation assumes that there exists a set of discrim-
inant functions (one for each signature) with known
functional form except for a set of parameters or
weights. 1In this paper, a nonparametric classifier
based on a least-square-error criterion is intro-
duced. Using the designated training samples, an
iterative procedure can be formulated which learns
the values of the unknown parameters. Consequently,
the classification problem is solved by computing
the discriminant function and selecting the maximum.
Example classifications of LANDSAT MSS scene
are studied. Experimental results in the form of
thematic maps and percent of correct classification
are compared with other well-known techniques.such
as Bayes and density-slice methods.

II. INTRODUCTION

Classification of LANDSAT image involves the
partitioning of multi-spectral/multi~temporal data
vector space into regions defined as signatures or
classes. Each picture. element (pixel) derived from

‘the MSS imagery will be assigned to a signature

identified by a prespecified distinct gray level in
the thematic (or classification) map. Basically,
these are two different approaches to the classifi-
cation problem. The parametric approach is charac-
terized by knowing the functional form of class dis-
tributions. Thus, the classification problem is
treated in the framework -of statistic decision
theory. The well-known classifiers in this category
are Bayes, Eppler, etc. [7, 8, 9]. The nonparamet-
ric approach make no probabilistic assumptions.

The analyst simply defines the decision boundaries
in the n-dimensional data space based on some cri-
terion or similarity measure [2, 1D, 11]. In both
approaches, if a set of training samples or sites
has been used to achieve the decision boundaries,

it is called the supervised classification. Other-
wise it is called unsupervised classification. The

clagsifier presented in this paper belengs to the
former category. The criterion for data discrimina-
tion is the well-known least-square-error approach
which has been widely used in pattern recognition
[1, 2, 3, 4, 5]. Since the most important task in
nonparametric pattern classification is the selec-
tion of a set of welights or parameters that defines
the digscriminant functions, the training method may
be viewed as an optimization procedure and the con-
cept of leagt-square~error can be utilized to form
a linear functional.

III. A LEAST-SQUARE-ERROR IMAGE CLASSIFIER
A. ALGORITHM

Let fi(x) = w1t¢(x), i=1, 2,...M, represent a
set of M discriminant functions, where {W1}¥,1 is
a set of M weights (or parameters) to be computed,
and ¢(x) = (¢1(x), ¢2(x), — 4(x), 1)t are linearly
independent, prespecified functions; M is the num-
ber of signatures and d is the number of channels
or measurements. The image classification problem
is solved by computing the discriminant functions
and assigning pixel x to signature 1 if

fi(x) > fj(x) 4,y =1,2,..., M
and 1 # j.

Now, consider the set of M discriminant func-—
tions as a transformation which maps all multidimen~-
sional patterns (or data vectors) from signature i
to a neighborhood of some M-dimensional fixed vector
ef = (eg1, €42, -.., ejp)*.  The mean-square-error
criterion isg utilized to formulate a linear func-
tional so that the unknown parameters of the trans-
formation can be computed.

Ni

M M '
Iy E 2 ("jt'(i) W - eik)z
k=1 i=1 j=1

where x.(i) represents the jth training sample of
signature 1

Ni = Number of training samples from signatﬁre i
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M
N= Z Ni’ total number of training samples,
i=1

A matrix-equivalent form for the criterion is:
= %11ww - E||? A_% Trace {(ww - B ew - E)}

where ¥ is the training pattern matrix, W is the
unknown weights matrix and E is the M-dimensional
vector matrix defined respectively as follows.

—

es x5 |
$(2) x2t(1)

¥ =| " , and (i) = : for all i=1,2,...M.

(Training samples
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The image classification problem becomes a prob-
lem of selecting Wi's and ei’s so that the gquantity
J is minimized. Since the vector ei's can be inter-

. preted either as cost vecotrs or as reference
vertices which are fixed, the minimum of J (i.e.,

in mean-square-error sense) can be obtained by
letting 3J/9W4 = O For all i amd using generalized
inverse computations to -furnish a quick solution.
For example, we can interpret the vector ei's as a
set of cost vectors, that is, ej = (c(1/1), <(2/1),
«oec(M/1i))t, where c(j/i) denotes the cost incurred
in classifying a pixel belonging to signature i

as signature j. Choosing

40 if i=j
c(3/i) =
c > 0 if i#j
The corresponding decision rule becomes:

Decide x belongs to signature i, if

< > 1

for all § # 1 (1)

where ,Wi = (:(xxt")—1 X - ﬁ—-x[il)
Ny
and x[i] = % Z xj(i)
=1
.M
—x_=%2 Ni x[i]
i=1
. M N
FeR Y 2 xW xw
i=1 j=1

The derivation of equation (1) is given in Appendix
A. Note that the CPU time required to compute the
above decision rule per sample pixel is proportional
to Md as compared to Md{(d+1) for a maximum likeli-
hood classifier.

The above equations indicate that the unknown
weights Wi's are derived from training samples non-
recursively (i.e. without learning). An adaptive
approach for least-square-error classification can
be realized by allowing the vectors ei's to vary"
both in magnitude and direction subject to certain
constraints. Therefore, the classification problem
becomes a problem of finding Wi's and ej's recur-
sively so as to minimize the functional J.

The recursive formula can be formulated in the
following manner. We assume that any vector e
corresponding to signature i must satisfy the in-
equality

e‘In] e [0] > ef[n] e,[0] for all j #1

where n is the iteration number, and ei[O] is the
vector assigned to signature i. It satisfies:

eit{O] ej[O] =0 if.i = j
; &> B

= 8 otherwise

The classification problem can be stated as a
problem of finding matrices W and E such that the
functional J is minimized.

The iterative aigorithm is derived by making use
of the gradient descent technique.

win] = v'E[0],

#

wi t

where - (Wtw)-l "

is called the generalized inverse of V.
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D[n] = ¥W[n] - E[n]

#

Win+l] = W[n) + ¥" AE[n]

E[n+l1]}

E[n] + AE[n]

where

AE[n]ij = pD[n]ij if e[n]ij ej[O] 3_g[n]ij e£[0]

for all 2# j
= 0 otherwise

Here, e[n];; denotes the ith row of matrix E[n]
corresponding to signature j. -The convergence proof
of the recursive scheme 1s provided in Appendix B.

The properties of least-square-error Criterion
and the Baysian method have been investigated by a
number of authors [2, 3, 4, 5]. Patterson and
Womach [4] have shown that for two classes pattern
classification, the least~square-error approach is
equivalent to the Optimal Bayes approach for nor-
mally distributed data having identical covariance
matrices. Furthermore, Wee [5] proved that the dis-
criminant functions obtained by the generalized in-
verse approach are closest among all linear func-
tions to Optimum Bayes discriminant functions in a
mean-square-error sense as the number of training
patterns approaches infinity.

B. SOFTWARE IMPLEMENTATION

Figure 1 shows the configuration of the image
classification system employed at TRW. The least-
square—-error classifier consists of two software
modules: 1) NTRAIN — for nonparametric training,
and 2) NCLASS — for nonparametric classification.
NTRAIN designates the training and evaluation sets
by making use of the graphics overlay feature of a
COMTAL 8000 image display system. This is accomp-
lished by setting the "bits" of the graphic overlay
using a track-ball cursor to automatically read
CRT pixel addresses. Once an overlay has been
defined, its "bits status" can be used to identify
the pixel addresses of interest in multitemporal/
multi-spectral images stored on a disk. Furthermore,
it is possible to have the training graphics omn
disk and for combination with all graphics to form
a joint graphics overlay for later use in the mode
of selective classification and/or performance
evaluation. Besides computing the unknown param-
eter matrix W and generating a parameter file, NTRAIN
also calculates the average gray level and pixel
scatter matrix for each signature. This piece of
information is useful in conducting pixel rejection
tests in NCLASS.

NCLASS assigns a unique signature to each pixel
to be classified according to the decision rule of
equation 1 in part A. The inputs to module NCLASS
are the parameter file and the pixel interleaved
multispectral data from a specified image source
file.

FULL SCENE DATA
BAND SEQUENTIAL

m SUBSCENE DATA
BAND INTERLEAVED]

PRIMITIVE
DISK -

FEATURE

SELECTION
FEATURE
EXTRACTION

STRUCTURE
ANALYSIS

GRAPHICS
OVERLAY
EVALUATION ]} DATA

THEMATIC MAP )
DATA
'/ THEMATIC
. MAP TION
DISPLAY

Diagram of the Image
Classification System

Figure 1.

IV. APPLICATION RESULTS

An experimental study of the Least-Square-
Error (LSE) classifier was conducted using LANDSAT
images (Scene ID 1072-18001) of Goldfield Nevada.
The full scene of Goldfield is shown in Figure 2
and the extracted subscene is shown in Figure 3
along with a density~slice thematic map of the
area.

The purpose of this experiment was to make a
comparison of the results obtained by the use of
LSE classifier as well as the well-known Bayes
classifier and density-slice methods. 1In fact, the
famous Goldfield test site near the Mud Lake area
has been investigated by a number of researchers
[12, 13, 14]. In this“test, six geological features
have been selected for classification as listed in
Table 1.

Table 1. Geological Features Selected for
Classification
) Gray Level
Signature Assigned in
Number Feature Name Classification
Map
1 Playa 10
2 Basalt and Vegetation 21
3 Felsic rocks 31
4 Basalt . 42
5 Alluvial deposits 52
6 Altered Zone with
Limonite 63
7 Unknown 0

For each signature, training was performed non-

recursively using a training site designated by
cursor positioning on a CRT display.

Identical
training sites were used for all three classifiers.
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In addition, the training graphics literal overlays
were combined to form a joint graphics overlay for
later use in selective classification and perfor-
mance evaluation. The percentages of correct clas-
sification based on the same training data are
tabulated in matrix form as shown in Table 2. Each
entry consists of three numbers: the upper number
represents the percent of correct classification
for the LSE classifier; the middle, for the Bayes
classifier; and the bottom, for the density-slicing
technique. The ideal result would be a score of

100 percent along the diagonal and zero elsewhere.
The actual evaluation matrix indicates that the
results of Bayes and LSE classification are similar
except in signatures 4 and 5. LSE classifier treats
basalt as if it were basalt and vegetation; on the
otherhand, the Bayes classifier correctly identifies
basalt training samples better than half the time.
This result may be explained by the fact that the
sample mean vectors extracted from two pairs of
training sites (i.e. basalt vs. basalt with vegeta~
tion and felsic vs. alluvial soil) show no signi-
ficant difference in magnitude and direction; how-
ever, there is a certain detectable difference in
the sample covariance of four spectral bands. The
non-recursive LSE classifier employed here generates
hyperplanes in decision space, while the Bayes
classifier constructs quadratic decision surfaces
based on estimated sample covariances.

The performance of the current LSE classifier
can be improved by either using a second or higher
order ¢(x)* function so as to generate the high
order decision surfaces or by incorporating the
recursive scheme to obtain an optimal E matrix
before classification. The classification maps
generated by the LSE and Bayes classifiers are shown
in Figure 4. Both maps agree well with geologic
ground truth, except that the LSE approach tends to
put an equal emphasis on basalt and vegetation and
felsic rocks as compared to the wide range of felsic
rocks of Bayes classification. The density~slice
classifipation map contalns a large percentage of
unknown class assignments. This is due to the fact
that the thresholding technique was implemented
without a majority decision rule. Therefore, pixels
falling in the overlapping area of the parallelo-
pipes are automatically assigned to the null class.
The density-slice software can be modified to in-
corporate a majority decision rule at the cost of
processing speed.

V. CONCLUSION

The least-square-error classifier has been shown
to be a useful tool in LANDSAT image classification.
It is superior to the density-slice technique.
Application results in Section IV indicate that LSE
discrimination can be a useful alternative to the
parametric Bayes classification. Furthermore, using
high-order discriminant functions and/or recursive

*
Sometimes called a ¢-machine in pattern recogni-
tion. [15]

training method, the LSE classifier can potentially
improve the classification performance so that it
can consistently out-perform the Bayes approach
under nonparametric conditionms.

Table 2. Selective Classification Results

Signature Number
1 2 3 4 5 6
100 0 0 0 0
100} 0 |0} o jo | 9]
1§ 100 0 0 0 0.
BN 0 o 1
0 96.7 | 21.1] 79.1]15.5] 1.2
2k_€_—ﬁ3__f§—£lT3 0
"0 | 114 | 1.1 w1l o [ o~
0 2.9 | 65.51 7.5 34.0] 50.7
e — o e e e e e — e e - —
3 0 4.0 1 64.0] 10.11] 8.8| 55
sl 770 170 l2a4a) 02 30l 3.1
2
0 0 0 12.1] 0 0
E AR P i iy SR SRR
o] 4 0 11.8 | 9.41 52.3] o 0
3 "0 1T 0 1 oal 12l o 0
I3 0 0.4 8.2 0.2 | 48.2] 22.3
=1 R g b Al bl Mg} Byt Myaihc
5 0 0 17.7 | o fo1.1] 27.7 ]
R S B R Ruiiel MuiAdd
0 8.9 | o [J11.2] 26.1
0 0 5.1| 0.8) 2.3) 23.2
6 0 "o 111l 0 | 0.1 17.0 |
0 | o ] 3.9 o [o |30.0
0 0 0.2] 0.3] 0 0.7
7 o170 4.0 1.2 0.1 0.3
"0 | s8.6 6f7_%J+M£ 50.8
Sample
amp®) 1955 | 1118 |1115 | 665 |920 | 737

APPENDIX A

GENERALIZED INVERSE APPROACH FOR
UNKNOWN WEIGHTS COMPUTATION

Generalized inverse computation can be used to
furnish a quick solution to image classification
problem using the least-space-error criterionm.
Sinice the rows of matrix E can be interpreted
either as reference points or as cost vectors and
in both cases it is a predetermined matrix, the
minimum of J can be obtained by letting 3J/3W = O.

This implies that:

t #

w= vl vtE = v

where W# is called the generalized inverse.
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x[1] = e xj[i]
147
. v N
L DD PEN IR E
i=1 j=1
M
x ==%i- Z Nix[i]
i=1
then,

=
i

M Ni -1 M Ni
Z Z xj[i]xg[i] Z Z xj[i]eit

=] j:]_ i=1 j=1

. M
N1 (xxt)™2 DAY eif)
=1
Set

eit = (C(1/1), C(2/1),..., cM/1)) = c"(1)

and assume
c(j/iy =0 if i=4

= ¢ > 0 otherwise

-1 N N
W= c@xH) (f— 7% x[1], x- 7% X12)], eeey X-

A reasonable decision rule is:

Decide xe class i if

2 . 2
Hxt - S]] < [ - S}
for all j#i

Expanding the above equation, the decision rule
becomes:

Decide xe class i if

M _ M
L1ye? - L 1ye?
CZ xtwk - 2»(M 1) > ¢ Extwk 2(M I)c
k=1 k=1
kfi k¥
or, if _
t t
x wj >x W, for all j#1
where

——— N
w, = c(xxt)_l <; - 7% x[i])

APPENDIX B
CONVERGENCE PROOF

The eonvergence proof of the recursive algorithm
can be divided into two parts.

Part 1. If the constraint on E is violated, the
algorithm will be terminated since 8E[n} = 0 for all
n.

Part 2. Assume that the constraint on E holds.
It must be shown that the algorithm converges. That
is, ||DIn]|[|+0 as n + =,

Two matrix identities will be proved first.
(a) ¥'D[n]

vt (¥ [n] - E[n])

vt wlE[n] - E[n])
#

cvtey? - vty E[n]

ety ety vt~ v E[n] =0

() Trace p[n)t(w’-1)t (w¥¥ -1 dlaD

= Trace {n[n]1t[cr¥") Eevh)-ve’-wehi1) DAy

= Trace (p[n]t[¥(rty) Loty vty vt 2ve’+i1D[n])
= Trace {D[al%(z-¥¥")Dfn]}

= Trace {D[n]tD[n]} - Trace {D[n]tWW#D[n]}

= HD[n]H2 - Trace {(YA[n] - E[n])twv#p[n]}
= ||pIn]]}? - Trace {(¥¥'E[n] - E[a])TvyPD(n]}
= |Ipnl]|? - Trace {Ela1t(¥¢’-D) Ty ¥t®)™! vD[a]}

= |ID[n]||2 (by matrix identity a).

Now define V(D[n]) = [ID[n]Ilz, a positive definite
function.

AV(D[n])

V(@ [n¥l]) - V(D[n])

V(¥W[n+1l]l - E[n+1]) - V(D[n])

= v(e@n]+¥?sE[n]) - E[ntl]) - VDIn])

= vewiln] + v'eD[a] - E[n] - pD[n]) - V(DIaD)
= V([a] + pw!-D)D[]) - V@I

- HMﬂ+pw#4mhnﬁflthﬁ

= Trace {[D[n] + p(‘l"i‘#—I)D[n]]t
x [pin] + p(vefD)D(a})} - ||D[n}||?
= Trace {D[n]®Din] + oD[n]t(¥¢?-1)D(n}
+ oD[nlt (¥¥?-1)D(n]
+ o2onit - fw?-1)d 0]} - ||Dln1f|?
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“Por 0 <p < 2, 2p-p2
0 for all D[n].

||D[n]||2 + 2p Trace {D[n]t(vw#—I)D[n]}

+o2[pla1f|? - ||pin||? (by matrix
identity b)

2p Trace {D[n]t(WW#—I)D[n]} + p2|[D[n][[2

20 Trace (p[n]t¥¥’D[n]} - 2o Trace (D[n]D[n]}
+ 0% |pInlf|?

-20|[pin]||? + 02| |DInl]]? (by matrix identity a)
-|Ipial |12 @20 - 0%

= p(2-p) > 0, and AV(B[n]) <
Also, 4V(D[n]) = 0 if D[n] = 0.

By Lyapunov's stability theorem for discrete

systems [6], 1lim V(D[n]) = lim llD[nlI 2=0
oo e
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1872-18801- &5 TRW-SPF  23MARYS

Figure 2. TRW System Corrected Goldfield Scene — The Area Inside The Box is
Extracted for Classification.
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GOLDFIELD BAND 51872-18881 DENSITY SLICE TM TRW-SPF

Figure 3. Goldfield Nevada Subscene and Density-slicing Thematic Map
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