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A METHOD OF INTERPOLATION IN TWO DIMENSIONS,
AND ITS APPLICATION TO MULTI-SPECTRAL IMAGE
REGISTRATION

MARIA GARZA AND RENATO BARRERA

ITMAS, UNAM, Mexico City

I. ABSTRACT

A method for interpolating a kidimensional
surface through irregular sample points is
The method includes the usage
of finite element techniques and is appli-
cable to multi-spectral image registration.
A partition method to generate the grid
over the image is also proposed.

II. INTRODUCTION

An interactive computer system for mani-
pulation of multispectral images was
developed at IIMAS (Instituto de Investi-
gaciones en Matematicas Aplicada y Siste~
mas) for earth resources analysis. It is
a set of programs called "SYSTEM PR"
written in ALGOL for the B6700 computer,
at present being transferred to a PDP 11-
70.

The system's input is at the moment
LANDSAT, SKYLAB or LARSYS images, being
these the ones in use at IIMAS. Images
can (1) be printed by the usual line
printer or by an electrostatic printer,.
(2) be enhanced using several methods, (3)
be classified using one of four different
classifiers: maximum likelihood, bayesian,
table look~up or clustering. The user is
able to generate additional "bands"
(gradient, ratio), or average images de-
pending on the results desired. "PR" can
be used either interactively or batch
mode, allowing the user to supervise small
tests through the remote terminal and make
bulk processes in batch.

Several government agencies have been
using the system for the last two years.
DETENAL (Direccion de Estudios del Terri-
torio Nacional), the mexican mapping
agency, has involved IIMAS in a one year
project which consists on generating land
use maps automatically. Two areas, size

1,125,000 hs. each, were classified in 12
different classes using just one date
image. Results were very good, although
it is clear that two dates should be used
in the future because of the confusion of
some crops. As the rainy season image
was used, grass and agriculture were some
times confused, so it is advisible to use
the dry season image also. This made
necessary the ‘implementation of registra-
tion procedures in order to use more
information during classification.

C.F.E. (The Federal Electricity Comission),
" is another agency using the system.

IIMAS
and CFE are developing techniques in order
to identify geothermal zones in the
country using thermal Skylab and airborne
scanner data, and heat models. Three
areas in the volcanic axis and one in the
North of Mexico will be studied, and the
images obtained for several paths for day
and night passes must be registered.

With these two projects, it became neces-
sary to develope automatic registration
techniques. The method used and the
results obtained are presented below.

III. PROBLEM STATEMENT

Let A and B be two images covering the
same area at different dates (fig.l). If
pixels in image A are expressed in terms
of (X,Y) and pixels in image B in terms
of (U,V), let

(X5.Yi), i=1l,...,m
be m ground control points in A with
(Ui,Vi) coordinates in B.

These m ground control points are found
using an SSDA (Sequential Similarity
Detection Algorithm) and a Monotonic-
Increasing Threshold Algorithml.

‘The pfobleh is how. to find functions F

and G such that
F(Xi,Y3i) =Uj
G(Xi,Yi)=Vyi i=1,...,m

and

S J h(F(x,y))+h(G(x,y)) dx dy

taken over the whole image A is minimum,

where h is the functional

Ry 2
h(z) = (gETz + g;rz)z.

Functions F and G can be solved indepen-
dently, so hereafter we will only be
speaking of solving the problem for a
single function
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IV. EXISTING METHODS

The problem has been solved either using
a Green's Function or a Partial Differen-
tial Equation (P.D.E.). The first ex-
presses Z(X,y) as

n . X +
Z(x,y)=(?_1ai ri(x,y))+a . +a .,

Ane3Y

where

r, (x,y) =/(x-x) *+(y-y;)*

lo (x—xi)2+(y-yi)2

and

ai, i=1,..,m+3 is a solution for
fc] {a}= {r}, where [C] is the symmetric
matrix given by

’
ri(xj'yj)'
i=1,...,m; j=1,...,m

1,
i=m-1; j=1,...,m
j=1,...,m; i=m+l
X5,

C(i,j)= < i=m+2; j=1,...,m
i=1,...,m; j=m+2
Yj I
i=m+3; j=1,...,m
i=1,...,m; j=m+3
o,
elsewhere.

\.
and
s ui, i=1l,...,m
ri= 0, i=m+l,...,m+3

Matrix [C] has rank m and therefore cannot
be readily inverted. However, a variable
transformation can be introduced:

{a}=[H] {c},

where [H] is and (m+3)x m banded matrix of
bandwith 3, and the system

[H] {c} = {H]"' {r}

can be solved for {c}.

[H]'[c]

This type of solution has three draw-
backs: :

a) it involves the solution of an m x
I non-sparse system of equations so it is
quite unattractive when dealing with many
control points.

b) to evaluate Z(x,y) at a given point,
m logarithms and square roots have to be
performed. That can be cumbersome for a
large m.

c) this solution considers energy in
an infinite plate, and the behaviour at
the edges tends to be too "smooth"

The PDE solution for m ground control
points deals with an m x m grid, so it is
also quite laborious.

V. METHOD PROPOSED

Once the ground control points are found
using the SSDA we proceed to obtain a grid
on image A that represents the finite
element partition used. We want a grid
such that no more than 3 points lie in a
rectangle. This, although restricting, is
a practical way to ensure solvability of
the system of equations.

Let us suppose that A is square. We
initially partition image A in p x p
squares, where p is the smallest integer
greater than \/m/3. The a test is made to
see which squares contain more than 3
points. The smallest rectangle containing
the three closest points in each square is
drawn, and the best partition is chosen
among the 4 possible ones generated by the
sides of the rectangle (fig.2). The
procedure is continued until no more than
3 points lie in a rectangle.

We will idealize image A as a plate
structure consisting of Ml X M, elements
generated by the grid connectea only at
nodal points, having nj x ny nodes with
nq=M1+1,n,=M2+1.We will try to find M; x
M, polynomial functions, one for each
element, that will transform image A to B.
Each element will be treated independently,
but finite element techniques will assure
that equilibrium of forces and compati-
bility of displacements be satisfied at
each nodal point.

Each element in A will have three
degrees of freedom at each node, namely
two rotations and the transverse deflec-
tion. Let us denote the lateral deflec-
tion by w, the rotation about the x-axis
by 0x and the rotation about the y-axis
by 6y. The element then has a total of 12
degrees of freedom.

Displacement in each node i can be ex-
pressed as:
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{6xi}
{0i}= ¢ {6yi}
{wi}

and the corresponding moments and forces
at node i may be written as:

{Txi}
{Fi}= {{Tyi}
{Fzi}

so complete displacement and forces of any
element can be written as:

{91}
oo |62
{94}

and

{F1}
{F2}
{F3}
{Fr4}

{Fel=

As each vector contains 12 elements,
stiffness matrix [ Ke] such that

{Fe} = [KRe] {de}
is a 12 x 12 matrix.

We now have to choose a displacement
function [ £(x,y)] that defines displace-
ment {3 (x,y)} at each point in the
element. 6x, 6y and w are related by:

ox=-0w/dy, fy=0w/dx
so once w is obtained, 6x and 6y are
automatically defined.

As each element has 12 degrees of
freedom, we will choose w as a polynomial
in twelve unknowns: |

W=C & X3y, %] oXyS (1)
. 2
ex=-(a3+“5x+...+3¢12xy (2)
: 3
By=02+204x+. . L+ oy (3)

It can easily be seen that continuity of w and 6x
are ensured along the edges where x is constant
but 6y may be discontinuos along this edge. In
general, along any edge a discontimuity of the
normal slope can exist, and because of this the
function is not ideal. (This can be avoided by
introducing into {9ij} a fourth element Ti called
the twist, where Ti=32w/dxdy).

Writing equations (1), (2),(3) in
matrix form we have

{0 (x,y)}=l £(x,y)] {=} (4)

where [f(x,y)] is a 3 x 12 matrix and {«}
is a vector of the 12 unknowns.

Substitution of nodal coordinates in
equation (4) leads to

{3e} =[A}{=x}
and solving for {=}leads to
{=}=[a] "1{ae} (5)
which substituted in (4) leads to
{2 (x,y) 1= [£(x,y)] [a]71 {de}

We have now related displacements
within the element in terms of nodal
displacements.

Once the needed relations are clearly
stated, we are now able to generate the
stiffness matrix [ Kel for each element,
and the stiffness matrix [K] for the
whole system?. We also generate the
restrictions matrix [ Be] for the ground
control points substituting its coordin-
ates in (4) and finally obtain the
restrictions matrix [B] for the whole
system.

[K] is a (3 n1 n2) x (3 ny ny)
banded matrix and [B] is a (3 nj ny m)
sparse matrix.

We want to minimize

{8}' [R]l {8}

where {0} is the whole systems displace-
ment at each node, subject to

(Bl {8} = {b}

where {b} is the vector contéing the U;'s.

In other words, we want to minimize
{a}' [K] {o}+e({a}'[B]'~{b}") ([B]{3}-{b})
where e is a penalty term.

This leads to solving

(IK]+el B] '[B]){3}=el B] '{b}

for {9}.

The systemvis solved uéing Cholesky
triangularization and we obtain {d}.

This is done very easily because matrices
[K] and [B] are very sparse. Addition of
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term [B] '[B] does not diminish sparsity.

Substituting each elements displace-
ments {de} in (5), we obtain the M1 x M,
polynomial functions necessary to trans-
form image A.

VI. EXAMPLE

We will show below an example used
with the present procedure. Although it
does not correspond to an image distortion,
it is an example already solved by other
methods.

The case consists of:

m=10 (10 restrictions)
M1=M32=4 (16 elements)
ni=nz=5 (25 nodes)

Input data is:

x y element displacement
0.64 0.04 1 2144
0.2 0.44 5 1184
0.52 0.32 7 25712
0.68 0.84 8 2699
0.28 0.2 8 783
0.96 0.2 8 44621
0.48 0.84 9 54610
0.32 0.68 10 869
0.76 0.04 10 4233
0.52 0.52 12 13005

Grid and restrictions are shown in fig.

Matrix formation takes 2 CPU seconds
and solution takes 6 CPU seconds. Solu-
tion is plotted in fig. 4.

We consider the present method to be
very successful for m>30.

VII. PROPOSED MODIFICATIONS

Succesive over-relaxation cannot be
applied to our method, for the penalty
terms cause a bad ratio among the eigen-
values of the matrix [K] + e[Bl' [B].

Even though a factorization solution
of the system of equations is satisfactory,
it is desirable to have an iterative
method which will allow us to start with
an approximate solution and improve it
until it fulfills a convergence criteria.

Two of such approaches have been
explored:

a) "Control Problem Approach"

It consists in breaking vector {9} in
a series of nj subvectors {u(l)},...,
{u(nj)}, each of them of dimension 3njy,
and corresponding to the displacements
and rotations of the nodes of a row.

The optimization problem, after some
algebraic manipulations, can be expressed
as to:

minimize
n~1
1/2( Z {p(i)}'{p() }+{u()}'[w(1)]l{u(1)}+
1=1

{u(n1)}'[W(n1) H{u(ny)} )
subject to

{ui+D) I=la(d) 1{u (D) }+[B (1) 1 {p(i) }+
{c(i)}, i=1,...,n1-1

[a)], {B] and {c¢} are such that for any
choice of {u(1)} and {p(1)},..., {p(nl-1)},
v?cgors {u()},...,{u(n1)} fulfill [A]{u}
={b}.

The previous system of equations allows
a simple way of computing the gradient
with respect to {u(i)} which can be used
to improve the solution.

b) "Triangular Element Approach"

It consists in using a triangular
irregular grid with the vertices
corresponding to either control points or
to suitable points on the edges of the
image.

Even though the approach implies to
have

i) a triangle formation routine,
ii) a node ordering procedure,
iii) either some waste in computer
memory or a more elaborate way of
managing the sparsity of matrices,

the difficulties introduced are less than
the extra computer time needed in the
control problem approach.

Therefore, work is planned to continue
along these lines, adding the capability
of working with "twists" (second deriva-
tives specified at nodes).
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IX. LIST OF SYMBOLS

] denotes a matrix.

} denotes a vector.

]' denotes a transpose matrix.
}' denotes a transpose vector.
wer case letters denote scalars.
] “denotes inverse matrix

[e)

[
{
[
{
1
[
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FIGURE I. GROUND CONTROL POINTS FOR [IMAGES
A AND B.

) 2 ’ 3 I 2 3

3 |
IMAGE A
FIGURE 2. INITIAL AND FINAL PARTITION DURING

GENERATION OF THE GRID.
CASE m=9, n=4,n,=3, M3, M=2
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FIGURE 3. RESTRICTIONS AND GRID.

FIGURE 4. SOLUTIONS PLOTTED IN THE
Z—AXIS
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