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'LANDSAT MSS COORDINATE TRANSFORMATIONS

BERTHOLD K.P. HORN
Massachusetts Institute of Technology

ROBERT J. WOODHAM
University of British Columbia

I ABSTRACT

A number of image analysis tasks require the
registration of a surface model with an image.
In the case of satellite images, the surface model
may be a map or digital terrain model in the form
of surface elevations on a grid of points. We
develop here an affine transformation between co-
ordinates of Multi-Spectral Scanner (MSS) images
produced by the Landsat satellites, and coordin-
ates of a system lying in a plane tangent to the
earth's surface near the sub-satellite {Nadir)
point.

IT INTRODUCTION

Some image analysis tasks depend on the
availability of a registered surface model. Reg-
istration can be accomplished using manually iden-
tified ground control points or by matching the
real image with a synthetic image calculated from
the surface model using assumed reflectance prop-
erties. In either case, the form of the trans-
formation from image coordinates to model coordin-
ates must be known. The registration process is
then used to determine the unknown parameters of
the transformation.

. We show here that in the case of satellite
images obtained by a mechanical scanning system,
such as that used on the Landsat satellites, an
affine transform applies, if small, second-order
effects are neglected. Such a transformation has
S1X parameters which depend on the state of the
scanning platform. Each parameter is exhibited
as a function of the components of this state and
other relevant fixed quantities. These equations
can then be used to predict transformation para-
Eeters if the state of the scanning platform is
nown,

ITI BASIC ORBITAL GEOMETRY

Landsat is in a near-polar, retrograde, sun-
Synchronous orbit which is nearly circular. The
nominal parameters of this orbit include a semi-

major axis of 7,294,690 meters, (i.e., 916,525
meters above an earth with equatorial radius of
6,378,165 meters) and oblateness of 1 in 298.3.

The nominal period is 103.267 minutes, which brings
the sub-satellite point back to the same spot on
earth after 251 orbits in 18 days. At the equator,
neighboring 'sub-satellite tracks are spaced 159,380
meters. The descending node is nominally passed
at . 9:42 A.M. The orbital inclination is nominally
99.092°, which brings the satellite within e =
9.092". of the north pole at the vertex V (see Fig-
ure 1). A1l of the parameters drift with time due
to perturbing influences such as solar wind, light
pressure, atmospheric drag, non-spherical distri-
bution of masses in the earth, effects of mass
expulsion, and so on. The orbit is readjusted at
time using small gas discharges to maintain the
positions of the ground-tracks within about 35 km
of nominal and to prevent the time of north to
south crossing of the equator from drifting too
far from the nominal 9:42 AM. The orbital data

is derived from radio tracking information.

Points on the orbit may be conveniently refer-
enced to the vertex V. The orbital travel distance
p is measured from it, and the reference meridian
passes through it. The change in geographical
longitude A_ 1is measured from the reference
meridian (see Figure 1).

Ignoring for a moment the rotation of the
earth, we find that the nominal position of the
satellite, S_, 1ies at (geocentric) latitude ¢'.
The nominal > heading of the satellite relative to
the Tocal meridian is given by the angle H_.

The relationship between orbital parameters™ e, p
and the geographical coordinates A_, ¢' can be
estab1ish?d using products of rotation
matrices.' Here we follow a more direct route
using spherical trigonometry.

Considering the right spherical triangle N E
S (see Figure 1), applying the sine theorem, one
finds that '

sin ¢' = cos e coSp (1)
Next, from right spherical triangle V P SS, one
finds,

sin As/sin p = sin Hs/sin €

and, applying the cosine theorem (for angles),

cos As = sin HS cos p.
Hence,

tan As = tan p/sin e. (2)

Equations (1) and (2) determine geographical co-
ordinates ¢', A_ in terms of orbital parameters
e, p. Similarly;

cos HS = sin AS cos €.

Hence,
tan Hs = tan e/sin op. (3)

Equation (3) determines nominal heading Hg in terms
of orbital parameters ¢, o.

The earth, of course, does rotate and so the
sub-satellite point is displaced an additional
amount in the direction of the local geographical

1979 Machine Processing of Remotely Sensed Data Symposium

CH1430-8/79/0000-0059$00.75 © 1979 IEEE 59




parallel, from point S_ to point S. The 1atjtude
¢' remains unchanged while the longitude is
increased by A and the sub-satellite track dey-
ifates by an angle H_ from the nominal direc~
tion. In order to calclilate these quantities, one
must know the angular velocities of the earth and
of the satellite in its orbit. Let these quanti-
ties be Wg and W s respectively.

Since the satellite retraces its path almost
exactly every 18 days, after completing 251 orbits,
we know the ratio of these two quantitfes,

r =w/w =d2ir_/dp.= 18/251 (4)
Hence, w &S e

}‘e =rpe (5)
Actually, w_ is not constant, unless the satellite
is in a circular orbit, a point we will return
to later.

At latitude ¢', the earth surface is dis-
placed a distance R w_ cos ¢' dt in a time inter-
val dt, where R is the®distance of the surface
from the earth's center.

The calculation of the change in heading is
a little bit more complicated. If we let the sat-
ellite heading H = He + Hs’ then one can see that
(Figure 2)

tan H = (rm cos ¢' + sin HS)/cos HS (6)
Next,
tan He = tan (H - HS) = (tan H - tan Hs)/
(1 + tan H tan H_)
so that, . §
tan He =r, Cos ¢' cos Hs/

(1 +r cos¢' sinH) (7)
Now, from the right spherical triangle PV S

(Figure 1), one obtains s
cos ¢' sin HS = sin ¢ (8)
Similarly, one finds,
cos ¢' = sin p/sin A (9)
In deriving (3), we determined® that cos Hg

= sin Ag COS €, SO that
cos ¢' cos H_ = sin p cos € (10)
Finally, we can use equations (8) and (10) to
simplify (7),
tan H, = r cos e sin o/(1 +r sin ) (11)
Equation ~(11) determines H,k in terms of orbital
parameters e, p and the consfant r . Note that Yy
sin ¢ is quite small (.0112) and cin be ignored in
approximate calculations.

Also, using (8) and (10), we can simplify (6),
tan H = (r cos? ¢' + sin e)/(cos e sin p)
or, w
tan H = [r (1 - cos? e cos? p) + sin €]/
[cos e sin p] (1

To sum up, given ¢ and ¢', we find the orbital
travel distance p using equation (1), the longitude
relative to the reference meridian x = A_ +
using equations {2) and (5) and the head¥ng

H= HS + He using equations (3)-and (11), or (12).

IV THE SCANNING PLATFORM

The satellite uses an oscillating mirror to
roduce the across-the-track scan. Individual
ines of the image are obtained by this means.

The satellite's motion in orbit provides for the
other scanning direction. Successive lines are
displaced along the sub-satellite track. Nomin-
ally, the optical system points straight down and
the mirror scanning motion is perpendicular to the
velocity vector of the vehicle. In practice, there
are small but significant departures from this id-
eal state.

Pitch and roll are measured to an accuracy cf
.07" using horizon scanners sensitive to the infra-
red radiation (around 14 ym) emitted by the atmos-
phere. Yaw is measured with similar accuracy using
a gyro compgss. Pitch and roll are maintained
within = .4~ using the vehicle's attitude c8ntro1
system, while yaw is maintained within + .77, A
major component of the attitude control system is
a set of inertia wheels which are used in order to
keep down gas expenditure.

An attempt is also made to minimize rates of
change of attitude which result from adjustments.
The maximum attitude rates are .015 degree/second.
Attitude rates are estimated from time-histories
of measured attitudes. For further information on
the sc?nning platform and its motion, see refer-
ences | - 4

Ground tracking information provides good
ephemeris data. However, since a picture cell in
the image is only about 79 meters by 56 meters,
one cannot expect the position of the satellite to
be known accurately enough to predict exactly which
point of the earth is imaged. Similarly, on-board
horizon sensors .permit a good determination to be
made of the attitude of the satellite platform.
Nevertheless, these measurements are not accurate
enough to permit the direct calculation of the
ground coordinates corresponding to a particular
picture cell. Errors of several kilometers may be
encountered when this is attempted.

"Precision processing" of satellite image
information entails the manual identification of
known ground control points on each image and the
derivation of a suitable transformation based on
this information. So far, this has proved too
expensive and Landsat images are "bulk processed",
that is, treated as if the calculated position and
attitude of the satellite were exact. As a result,
the final photographic products may have errors in
translation of several kilometers. Fortunately,
non-linear effects introduced by this approximation
are small.

One might envision systems which automatically
register image information with map or surface mod-
el information. In such a system, one has to model
the imaging operation so that the registration pro-
cess can be used to determine the unknown para-
meters, such as satellite position and attitude.
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A clear understanding of the scanning process is
required to accomplish this.

A. FINENESS OF THE SCANNER MODEL

A large variety of effects contribute ta the
imaging transformation. Amongst these are large
effects which must be considered, such as the
motion of the satellite in its orbit and the rota-
tion of the earth beneath it. There are also
smaller effects which have to be judged individual-
1ly. Some of these produce non-1inear effects.
Examples are panoramic scan distortion (the mirror
scans evenly in angle, not tangent of the angle),
perspective projection (which can be dealt with
only if a surface model is available) and second-
order effects of errors in attitude of the space-
craft. The relative importance of these effects
has already been discussed by others1-4, The most
important criterion for including an effect in our
model was linearity.

Fortunately, all major components of the image
transformation turned out to produce linear trans-
formation of image coordinates. Second order, non-
Tinear effects were neglected, but turn out to
contribute errors which are typically smaller than
a picture cell in size. Compounding these Tinear
transformations leads to an overall affine trans-
formation which is easy to deal with. Such a
transformation has six parameters, which may be
found using the registration of the image with
some surface information in the form of a map or
a digital terrain model.

The six parameters, as one might expect, de-
pend rather directly on the position of the satel-
Tite in its orbit, the attitude of the scanning
platform, the orbital velocity, and the mirror-
sweep velocity. It is conceivable that a system
which automatically determined the parameters of
the affine transformation using a matching process
of real with synthetic images obtained from a
terrain model, could also then proceed to estimate
the underlying orbital data. A satellite equipped
with such a system would be able to determine its
position or attitude more accurately than it might
using predicted ephemeris data obtained from ex-
pensive ground tracking efforts,

B. NOMINAL PARAMETERS OF LANDSAT IMAGING SYSTEM

The following summarizes the nominal para-
meters of the Landsat imaging system (nominal
parameters drift):

Orbit:

Apogee = 917 km 0 Perigee =~ 898 km

Inclination = 99.1° (Retrograde orbit)

Anomalistic period = 103.267 minutes

[That is, 251 orbits in 18 days]

Equatorfal Earth radius = 6378 km

Polar Earth radius = 6357 km

Equatorial speed of rotation = 463.8 m/sec

Average ground track speed of satellite = 6457
m/sec

Mirror-Scanner:

Frequency = 13.260 Hertz

[That 1s, 6 lines are scanned every 73.42 msec]
One Tine every 12,237 msec

Lines spaced by = 79.0 meters at nominal height
390 scans per image

That is, 2340 scan-1ines per image

[This takes 28.63 seconds and covers = 185 km}

Pfke1 Information:

Instantaneous field of v18w =79 mx 79 m

Mirror amplitude = 2,886

Total scan distance = 11,545°

That is = 185 km at nominal altitude

Pixels per line (nominal) = 3240

Sampling interval = 9.958 usec

That is, about 55.8 to 56.5 m on the ground

Consequently, w_ = 6.21 radians/second

Time to scan {six) 1ines (in parallel) =~ 32.238
msec

Total Image Size:

= 2340 x 3240 = 7,581,600 pixels

V. IMAGE COORDINATE TRANSFORMATION

Let the pixels be numbered sequentially with-
in each scan 1ine and let the scan lines be number-
ed sequentially. Then x_ will be the number of a
pixel counted from the beginning of a scan-line,
while y_ will be the number of a 1ine counted from
the beginning of a particular image. (Actual-
1y, this is arbitrary since the scanner does not
start or stop at image boundaries; the continuous
stream is segmented into images by ground process-
ing). These will be called satellite coordinates.

Now erect a coordinate system in the region of
interest. First construct a tangent plane and let
the x-axis run in the west-to-east direction, and
the y-axis in the south-to-north direction. Now
add a z-axis going vertically up (we ignore the
non-spherical nature of the earth and other such
minor effects). We will use the notation (xe,ye)
for points on the surface. The satellite
can also be Tocated in this earth coordinate system.
At some reference time t_, it is at (x.,y.,z_ ) and
has attitude a(roll), s(Bitch), and 2°° ©
v(yaw). The three attitude angles will be assumed
to be small.

At time t_, the scanner will also be at a
particular poiﬂt in its scan of the image. let it
be scanning the x__-th pixel in the y__-th line of
the image. If th&" sensor were point?ﬂg straight
down (that is, @ = 0 and B = 0), it would be imag-
ing the sub-satellite point (x.,y,).

At this point we introduce a convenient arti-
fice, a spherical earth fixed relative to the orbit
of the satellite.. That is, a spherical surface
which is also sun-synchronous, rotating once a
year. Later we will take into account the fact
that the earth rotates underneath the satellite.
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We will first develop the coordinate transforma-

tion for the case of a fixed surface because it is
easier to understand this transformation. Here it
is convenient to refer pixel locations to the ref-
erence point (Xso’yso)

xp = (xg = xgo) and y1 = (yg, - ¥) (14)

Let the angular scanning velocity produced by the
mirror during its linear phase be (about 6.21
rad/sec) and let t_ (9.958 usec) be"the sampling
interval during thd scan, then, on a surface at a
distance z_ from the satellite and perpendicular
to the ext8nsion of the optical axis of its scan-
ning system, we find a cross-track scanning ampli-
tude x, as follows,

Xy = (wm z, ts) X1 (15)
In the along-the-track direction, the motion of
the satellite in its orbit provides for the scan-
ning and so, ,

y2 = (ug Rt} n (16)
where R is the distance of the surface from the
center of the earth (about 6370 km), while w_ is
the angular velocity of the satellite in its
orbit (about 1.014 milli-rad/sec) and tg is the
interval between successive scan-lines (12.237
milli-seconds). [Actually six lines are scanned
simultaneously every 73.42 milli-seconds.]

At this point, we note that because of possi-
bly non-zero yaw, the across-track scanning may
not be perfectly perpendicular to the along-track
scan. This skewing effect can be taken care of as
follows (Figure 3),

X3 = Xz COS ¥ and Yz = yp - Xp Sin v (17)
We still have to deal with the effects of roll and
pitch. For small angles, these will have the ef-
fect of shifting the imaged area by an amount pro-
portional to the product of the angles and the
distance to the surface being imaged. Secondary,
non-l1inear effects (such as bending of the scan-
ning line) will be ignored, as will non-commuta-
tivity of rotations.

Thus the effects of non-zero roll and pitch
can be introduced,
Xy = X3 - a2, and y, =y; - 8 z, (18)

where z_ is the height of the satellite above the
surface as before. The coordinate system above
lies on the tangent plane of the (fixed) sphere.
One coordinate axis (y) points backward along the
sub-orbital track, while the other (x) lies at
right angles to it. We would prefer to work with
a system which is aligned with local north. The
angle between the local meridian and the sub-
satellite track (on the fixed earth) is H.. We
can rotate coordinates into a new system S as
follows (Figure 4),

Xs = Xy cos Ho + y, sin H (19)

¥s = =Xy sin Hg + ¥4 cos Hg (20)

In this new coordinate system, the y-axis
points north and the x-axis east. Finally, we are
ready to introduce the rotation of the earth. It
has no effect on the value of y, of course, but
does introduce a shift in x which depends on the

time when a particular pixel is imaged. For a
particular 1ine of the image, this time can be
calculated relative to the time t_, when the ref-
erence line was imaged. For 1ine® number Yoo this
time interval equals t,(y_-y_.) = -t,y.. ~ In
this time interval, th& edrth %has rotated in an
easterly direction by an amount which depends on
the Tatitude.

Xg = X5 + (ze R cos ¢' tz) "

and yg = ¥s . {(21)
where w_ is the angular rate of the earth (about
72.722 fiicro-radians/sec) while ¢' as before is
the {geocentric) latitude, and R the distance of
the surface from the center of the earth.

To obtain coordinates in the original system
(xe,y ), we must add the coordinates of the sub-
satellite point (xo,yo),

Xo = X * X, “and Yo = Y6 t Y, (22)

A. THE OVERALL TRANSFORMATION

A1l the partial transformations determined by
equations (15) through (22) can be combined to
obtain,

Xq = COS (HS + Y)(wm z, ts)x1 + )

s ]

[sin H (ws Rt,) + cos ¢ (weR t)l oyt

[xg - (? cos Hs + 8 sin HS) z,]

Yo = -sin (Ho + y)(ay z) t) %1 +

cos H (ws R tl) v+

[y, - (-a sin Hs + B cos Hs) zo]

The transformation is of the form,

Xo =@ X ¥ by, +¢ (23)
Yo=dx tey +f (24)

This is an affine transformation, where the six
parameters are given by

a= (wm z, ts) cos (HS +v) (25)
P 3 t

b= (ms R tz) sin HS + (we R tz) cos ¢' (26)

e (o cos Ho + 8 sin HS) z, (27)

d = -(u, 2, tg) sin (Hg + v) (28)

e = (ms R tx).cos Hg (29)

f=y, -(~-a sin Hg + 8 cos HS) z, (30)

B. ATTITUDE/ALTITUDE RATES

Pitch, roll and yaw drift during the scanning
of a single image. The rates are less than .015
degrees/second. A constant rate of change, & of
pitch has the same effect as a change in along-
track ground velocity of & z That is, equation
(16) becomes,

v = (o R+82) t, v (31)

The transformation is altered only in the appear-
ance of (ug R + B z,) t, in place of (w R t ).
Typical = Svalues ° foF o R and fz_  Sare 458
and 32 meters/second respeétive1y (when & = ,002
degrees/second). This, then, is a small but no-
ticeable change (= .5%).

o
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A constant rate of change, a, of roll has
1ittle effect on the scanning of a single line
since Gy zZ > a z,. Successive lines, howevera
are M O%%nifted®laterally by o z, tz' That 1is,
equation (17) becomes,

X3 = X, €05 v + {a z, t2)¥1 and

Y3 = Y2 - Xz siny (32)
This causes additional skewing of the image.

Here, typical values are 4 Zo ts= 56.5
meters and a t_ t, = .4 meter (for o =
.002 degree/ Osef:ond). Again we see a small, but
noticeable change (= .7%), resulting in additjonatl
skewing (= .4%).

The vertical component of the velocity vector
(altitude rate) and also the yaw rate do not.con-
tribute to linear changes in the imaging trans-
formation. The first produces a change of lateral

scale from one end of the image to the other, the

second a tilt of image lines at one end of the
image relative to those at the other end. Such
small, non-linear effects are ignored. Except
for these two, however, all twelve components of
the state of the scanner platform influence the
transformation parameters.

If yaw rate and altitude rate are included,
one finds small temms in x;y; (and y). The
transformation is then no longer an affine trans-
formation. For small regions, the effects of
these terms can be ignored -- for images which are
large fractions of a standard Landsat image, they
cannot. In the latter case, one has to include
other non-linear terms we have ignored in any case
and then the transformation can be expressed with
sufﬁicient accuracy by two second-order polyno-
mials.

C. THE OVERALL TRANSFORMATION (FINAL FORM)

Using equations (31) and (32), the transform
parameters are now:

a = (u z, t.) cos (H + ) (33)
b= (wg R+ 8 z,) t, sin H_ +

(a z, t,) cos Ho + (w, R t,) cos ¢' (34)
=X, -(a cos HS + B sin HS) z, (35)
d= -(q“ z, ts) sin (HS +v) (36)
e=(ug R+ B zo) t, cos Hy -

(a z, t,) sin H 37)

f =y, -(-a sin H + 8 cos H) z, (38)

We see here that the transformation parameters de-
pend on the timing (t »ty) of the scanning system,
the mirror scan veldcity (w_), the position of
the satellite relative to the" tangent plane co-
ordinate system (x_,y ,z.), the orbital velocity
vector (as it affefts®w_®and H_ ), the attitude of
the scanner (a, 8, y), “the attitude rates

(¢, 8, v), and the latitude, ¢'.

We can use these equations to predict approx-
imate transformation parameters from estimated
values of satellite position, attitude and velo-
city in orbit. Conversely, if we can use ground
control points or digital terrain models to deter-
mine the coefficients of the transformation more
precisely, we can try and improve the estimates
we have of satellite position and attitude. Un-
fortunately, a rigid body has six degrees of free-
dom (position and attitude) and so its state has
twelve components (position, velocity, attitude
and attitude rate). Clearly, then, knowing the
six parameters of the affine transformation at
one instant of time is not sufficient to permit a
calculation of the vehicle's state. From the form
of the equations for ¢ and f it becomes clear, for
example, that one cannot distinguish in our model
between displacements of the satellite across the
track and small roll errors. Similarly, displace-
ments along the track have the same effects as
small pitch errors. Thus two of the six compo-
nents of position and attitude cannot be found
this way.

VI ADDITIONAL CONSIDERATIONS

A. FIGURE OF THE EARTH

To calculate the displacement of points due
to the rotation of the earth, and to relate the
geocentric distance of the satellite to its alti-
tude above the surface, one needs to be able to
calculate the distance of a point on the earth's
surface from the earth’s center. To a first ap-
proximation, a meridonal cross-section through the
earth is an ellipse (Figure 5) with semi-major
axis, a = 6,378,165 meters at the equator; and
semi-minor axis, b = 6,356,783 meters at the poles.

If we introduce a coordinate system with the
x-axis along the semi-major axis and the y-axis
along the semi-minor axis, then the geocentric
latitude, ¢' is defined by,
™ tan ¢; = y/x . (39)

e more commonly used geographic latitude, ¢, is
the angle between a local normal to the surface
and the equatorial plane. Thus,

-1/tan ¢ = dy/dx (40)
Using the equation for the ellipse, it can be

shown that 2

tan ¢' = (b/a) tan ¢ (41)
and that the distance R of a point from the center
is ab

R=/x2+y% = vaZ sinZ ¢" + b cosZ ¢' (42)

The height of a surface feature above mean sea-
Tevel must be added to this.

B. ORBITAL VELOCITY

Since a satellite's angular velocity in a
non-circular orbit is not constant it is useful to
relate this to other quantities. Using Kepler's
second law, it can be shown that

wg =21 a

Tr (43)
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where r is the geocentric altitude of a satellite
whose orbit is an ellipse with semi-major axis, a,
and semi-minor axis, b, and where T is the com-
plete period of the satellite. For a more detail-
ed analysis, see Lyndanne's modification of Brou-
wer's analysis of satellite orbits.%

C. MAP DISTORTION

So far we have ignored the fact that the
spherical surface of the earth cannot be repre-
sented on a planar map without distortion. Up to
this point, coordinates have been referred to a
hypothetical plane tangent to :the earth's surface
at a point in the region of interest. Typically,
a surface model will be derived from a map with a
different projection and a transformation must be
established between the two coordinate systems.

It can be shown that for typical map projec-
tions such as transverse Mercator and conformal
oblique axis cylindrical there exists a small ro-
tation H_ of map coordinates, where

sin Hm = sin % sin (o - eo) (44)

Here the projection is centered on a point at
Tongitude 8y and latitude ¢ and the point of
interest is at longitude 8 ~ and latitude ¢,
Consequently, the map coordinates, (x ,y ), are

related to the geographical coordinatds Mon the
tangent plane (xg,yg) by
X cos Hm -sin Hm xg
=]
B . (45)
Yim sin Hm cos Hm yg
where s is the scale of the given map. There will

also be a small scale change which varies with
1/cos (8 - &) for transverse Mercator and with
1/cos (¢ - ¢.) for conformal oblique axis cylindri-
cal project18n. Typically, this effect is so small
that it may be ignored.

The affine transformation, (23) and (24) must
be pre-multiplied by an augmented rotation matrix
M to correctly relate satellite image coordinates
to map coordinates.

cos Hm -sin Hm 0
M= %_ sin Hm cos Ho 0 (46)
0 0 1

For a_general discussion of map projections,
see Thomas’. A new projection, the space oblique
Mercator, has been introduced by Colvocoresses8,
analyzed by Synder9 and ado?ted as standard for
Landsat by EROS Data CenterlO,

VII NUMERICAL EXAMPLE

Landsat image number 1078-09555, produced
1972/0ctober/9 shows a region of Switzerland in-
cluding a mountain range called "Dent de Morcles".
The image annotation data suggest that at the nadir

the geographic latitude was 45.9197° and the head-
ing 193.11324°, Using equation (41), we see that
the geocentric latitude of the nadir point is
45.72740 and so, using equation (8), it appears
thatothe orbital inclination must have been ¢ =
9.11".

The altitude is given as 915,724 meters near
the region of interest, which lies at an average
of 1700 meters above average sea level. So z_ =
914 km. The region of interest lies at geogrgphic
latitude ¢ = 46.250 (geocentric latitude ¢' =
46.060), while the scanner at that time is above
geographic latitude ¢ = 46.40° (geocentric lati-
tude ¢' = 46,219). At this latitude, the angular
velocity of the satellite is slightly above its
average rate. Using equation (43),

2n 251

w, = 21_6_T X x 1.00967 r‘ad'ians/
s X 60 x 60 © 18 second

Further, o

wg = X 60 X 60 radians/second

Wy = 6.21 radians/second

tS = 91958 usecond

tu = 1 seconds

13.62 x 6

The image annotation also gives,

a (ro11) = -.20370° & = -.00160°/second

g (pitch)= .06688° & = -.00109%/second

v (yaw) = .23387° v = .00189%/second

Using equation (42), the earth radius near the
region of interest is 6,367,081 meters. Adding the
average elevation above sea level, we get

R «~ 6,368,800 meters
Using equation (1), one finds that p = 43.021° and
by equation (8), that H_ = 13.226°. Further,
(H +v) = 13.460°. Thén also, w, z, tg =

m ‘o0 s
56.521 meters, (w, R + 8 z_)t, = 79,582 meters,
t =
2

@z, t2 = -, 312 méters, anf w: R 5.667 meters.
So, finally,

a=54.99 b=21.837 ¢ X+ 2919
d =-13.156 e =77.543 f Yo © 1782

We can invert the above transformatjon to obtain
x; = .01704 x, - .00480 y, + x_

y; = .00289 x_ + ,01208 y_ + y!
where, € € 0

1 -1
N d e f
A digital terrain model for the area was ob-
tained for automatic registration experiments using
synthetic image!!. This model was given on a 100 x
100 meter grid, such that Xg = 100 * i and Yo =

100* j. Thus,
x; = 1.704 1 - .480 j + xé

y, = .289 1 - 1.208 j + yé
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The digital terrain model was obtained from exist-
ing topographic maps. The national map of Switz-
erland is based on a conformal oblique axis cylin-
drical projsction with center st the city of Bern.
9 =7°26'20" ¢ _=4657'10"
The reSion of interest cBvered by an available
terrain moSe] Ties at o
6 = 7°8' ¢ = 46°15"
The map rotation then is -.2250 (-.00393 radians).
The transformation matrix becomes

1.0 +.00393
-.00393 1.0

(The scale error is less than one part in 10,000
and can be -ignored).

Finally, we introduce the map distortion by
post-multiplying by the inverse of the map trans-
formation matrix introduced earlier (the inverse
of a rotation matrix equals its transpose). The
matrix then becomes

1.702 -.487
.294 1.207
The transformation matrix applicable to a 100

x 100 meter grid was found by image registration
techniques to be

11,694 -.517]
| .300 1.216|

for the area with a map distortion as defined
previously. Post-multiplying by the map trans-
formation matrix gives

1,693 -.505
.295 1.217
The inverse transformation matrix then is
" 55.08 22.86]
[—13.35 76.63J
From this one finds, H_ + y = 13.624°
w2, tg = 56.67 meters/pixel

And, if the attitude rates are assumed to be very
small, H 13.874% and so, y = .2519 and
(ws Rtm) 78.93 meters/scan-line.

i n

VIIT CONCLUSIONS

It has been shown that an affine transform

can be used to register Landsat MSS images to a

surface model if small, second-order effects are
neglected. For small regions, such second-order
effects can be ignored since they typically con-
tribute to displacements of less than one pixel.
(For images which are large fractions of a stan-
dard Landsat frame, second-order effects must be
considered. )

Each parameter of the affine transformation
has been exhibited as a function of the components
of the state of the scanning platform and other
fixed quantities. The resultant equations can be

used to predict approximate transformation para-
meters from estimated values of satellite position,
attitude and velocity in orbit. Conversely, if
ground control points or digital terrain models are
used to determine the coefficients of the trans-
formation more precisely, the estimates of satel-
Tite position and attitude may be improved.
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APPENDIX I: LOCAL SOLAR TIME bl={x, v, 1 Xé

An immediate application of the results
developed is the determination of the local cl 13 Y3 1 xg
solar time at the sub-satellite point. ({This
gives one some idea of what the position of the

sun is 1ikely to be.) Let the time of the des- Similarly,
cending node be T_.. That is, the satellite X 1-1 f
crosses the equato? from North to South when the d 1 N 41
‘local solar time is T_ (for Landsat this is
nominally 9:42 A.M., © but tends to vary as the el=| % ¥ 1 yé 4
orbit drifts and is readjusted).
R . fl Ix, ¥ 1 Vg
If a point is observed when the satellite 3 3 3

has progressed p in its orbit from the vertex

V (see Figure 1), then it still has to travel
through an angle (900 - p) before reaching the
equator. This will take an amount of time which
can be expressed in hours as rw(90° - p)/15.

If more than three points can be identified, better
acciracu os available using a least-squares
procedure. That is, if :

Furthermore, the point of bbservation 1ies N 1
(909 - A_) ahead of the point of equator crossing
in 1ongi§ude. Thus the local solar time is later Xy Yy 1
by a time which, when expressed in hours, comes M=

to (909 - A_)/15. Finally, then, one sees that
the Tocal 7solar time at the sub-satellite point
is
= o o -
T T° + (90 AS)/15 rw(900 p)}/15

where tan A_ = tan p/sin € (2). Because Ty =

18/251, one® finds that the first term predom- Then a good set of values for the parameters is
inates. As a result, points North of the equator, .
imaged earlier in the orbit, are observed at Tocal a X1
solar time after T_, while points South of the
equator, imaged later in the orbits, are observed T .-1.T
at local solar time before T . bl = (MMM xé

APPENDIX II: USING GROUND CONTROL PQINTS c ;,

n

An alternate method of estimating trans-
formation parameters is based on the identifica- d yi
tion of points of known ground position in the
image. Since the affine transformation has six
parameters, one needs to locate three such points. e
Let the coordinates of the points be (x;,.¥1),
Exz, yzg and (x3, y3) in the image and txl, Yids

and (x4, y4) on the map, then f
1]

. = .+ .+ !
Xy Tax;+tby;+c Yn

(M)~ InT | Y2

X5s ¥4

’
Y5 d Xp eyt f Typically, the accuracy obtained by fitting a
Thus discrete set of ground control points has been
’ found to be inferior to the area-based matching
of real and synthetic images.ll

and so on.
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Figure 2. Satellite Heading

Figure 4. Aligning Axes with North-South
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Figure 5. The Figure of the Earth
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