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ABSTRACT

In this paper we describe a multi-
temporal classification procedure for
crops in LANDSAT scenes. The method in-
volves the creation of crop signatures
which characterize multi-spectral observa-
tions as functions of phenological growth
states. The phenological signature models
spectral reflectance explicitly as a func-
tion of crop maturity rather than a func-
tion of observation date. This means that
instead of stacking spectral vectors of
one observation on another, as is usually
done for multi-temporal data, we establish
for each possible crop category a corre-~
spondence of time to growth state which
minimizes the smallest difference between
the given multi-spectral multi-temporal
vector and the category mean vector
indexed by growth state. The results of
applying this procedure to winter wheat
show that the method is capable of dis-
crimination with about the same degree of
accuracy as more traditional multi-tempor-
al classifiers. It shows some potential
to label degree of maturity of the crop
without crop condition information in the
training set.

I. PHENOLOGICAL DISCRIMINATION MOTIVATIONS

Degree of maturity of the crop, or
Phenological stage can vary even within a
small area at a given time. For example,

Nalepka15 has observed significant differ-
ences in phenological stage of winter
wheat between fields in Kansas LACIE In-
tensive Test Sites and even between areas
within the same field. Furthermore, 1t is
Posslible for one field to be at the same
Stage of maturity as a neighboring field
was 18 days earlier. Differences in
growth stage are particularly significant
in the later parts of the growing season
of winter wheat due to the rapid changes
in appearance that occur with maturation,

cutting, and in some cases, tilling of thé
fields.

We have experimented with a crop dis-
crimination method that takes account of
and utilizes this grown stage factor.
Multi-temporal classification 1is usually
carried out by simply appending the spec-
tral reflectance vectors observed at one
time with the spectral reflectance vectors
observed at another time. Then one pro-
cesses the new data set as if it consis-
ted of vectors like a single observation
data set. The usual crop signature is a
mean of these multi-temporal and multi-
spectral vectors associated with the crop

type.

We use a crop signature which con-
sists of sets of multi-spectral vectors
and associated crop type-growth states.
Associated with each crop is an "M-th
order signature" which is a set of M-
tuples (g;(al,bl),...,(aM,bM)) where g 1is
a growth state for the crop and (ai,bi) is
an ordered pair designating that a, is
possible for band b1 when the crop is in

growth state g. We say that a pixel is of
a given crop if: (1) each set of observed
gray levels on a particular date is con-
sistent with some growth stage g described
in the signature of that area, and (2) )
these g's are consistent with what we know
about vegetation phenology: growth states
at later dates must be more mature than
growth states at earlier dates. Classifi-
cation is done by eliminating categories
which do not satisfy conditions (1) and
(2). If more than one category is left
after the process of elimination, then the
pixel is unclassified.

To illustrate the meaning of this,
consider a 2-band example. Suppose obser-
vations (al,az) and (a{,ai) of a small

patch of ground are taken at times tl and
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t, using the bands b,,b This can be

2 172"
classified by determining, for each cate-
gory ¢, the first growth stage g, such

that (gl’al’bl) and (gl,az,bz) is in the

signature for c¢. If there is no such
growth state, then the category c is not
consistent with the observed spectral re-
flectance and c is not a possible classi-
fication for the pixel. If there is not a
later growth stage g, of category c such

that (gz,ai,bl) and (gz,aé,bz) is in the

signature for c, then ¢ is not a possible
classification for the pixel. Also note
that we may impose restrictions on the
growth states because only certain growth
states may be possible at a particular
observation time. 1In that case, category
c will not be a possible choice if the
only growth states consistent with the
observed spectral reflectances are not
possible for the observation times.

The effect of associated crop reflec-
tance with growth state, rather than ob-
servation time, is to reduce the variance
of crop signature. For example, in one
typical experiment, the average standard
deviation by band-date was 2.88, yet by
band-growth state was 1.42.

The implementation of this discrimi-
nation method requires two basic steps:
(1) signature creation using a training
set and (2) classification of the multi-
temporal image using the derived signa-
tures and crop calendar information.

A. GROWTH STATE SIGNATURES

Growth state signatures can be de-
rived from training sets with an iterative
procedure consisting of a step of dynamic
programming minimization followed by aver-
aging very much in the spirit of the ISO-

DATA clustering technique33. Let us

restrict our attention to one category for
the moment. Let x(bi,j,t) be the observed

spectral reflectance in the i-th band,
j-th sample (pixel or average over a
field) of one crop type, taken at the t-th
observation time. The set {x(bi,j,t) l

i=1,...,I; j=1,...,J; t =1,...,T} is
the training set for this crop category.

A category signature will be a func-
tion which gives for each band and growth
state, the mean spectral reflectance for
the category. Let u be a category signa-
ture. Then u(g,bi) is the mean i-th band

reflectance of a small area ground patch
of that category in the g-th growth state.
The iterative procedure begins with a

spectral signature for the category and
successively improves it.

We take for the initial mean signa-
ture the average of the training vectors
whose time components have been simply
interpolated over time to describe inter-
mediate growth states. For example, say
we have 5 observations, 13 growth states,
and al(l) and a1(2) are the average re-

flectances in the first band at the first
and second observation times.. Then

(Lia (1)), (250, (1) + (s, (2) - o (1)),

(33a; + 2(a;(2) - a;(1))) and (430,(2))

are in the initial signature u for the
crop. Figure 3 shows an example of an
initial signature of Morton County wheat
with 20 growth states. On each iteration
we find a monotonic mapping called m,

T

(j,t) - g, which minimizes 2 : max
t=1 1

lx(bi,j,t) - u(m,j,t);bi)[ for every sam-

ple j using a dynamic programming pro-
cedure. Note that this allows samples at
different observation times to map into
the same growth state.

At the end of each iteration the mean
signature is updated. Define a set Ag as

the set of all sample observation time
pairs which are mapped to growth state g.
The updated mean signature u' 1s defined

as:
x(b ’j’t)
u'(g,by) = Z ——ﬁ—— 1)
(3,t) € Ag g

The procedure iterates until it reaches a
fixed point. Figures 1 and 2 show the
final mean signature created by this pro-
cedure and the final growth state mapping
in a five date observation of a Kansas
LACIE site.

After iterating, we broaden the sig-
nature. In the broadening process,
(g,a,bi) 1s included in the signature if

Ia - u(g,bi)l < w. We chose the '"signa-

ture width”" w to be about twice the mag-
nitude of the average standard deviation
of pixel reflectance within the growth

stage. Then for each band bi and growth

state g, there is an interval of length
2w centered on u(g,bi) of gray levels in

the signature, as shown in Figure 3. We
note that, given the degree of variation

e e
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in sample standard deviation for the grow
growth state bands, a single width for all
bands and growth states is probably not
best, but is chosen for simplicity.

B. DISCRIMINATION WITH GROWTH STATE
SIGNATURES

In the discrimination process, one
chooses which bands in the signature to
use. Observed gray levels for a pixel in
these bands must fall within these inter-
vals in order for the pixel to be identi-
fied as 1n growth stage g. In the case
where more than one growth state identi-
fication is possible, the earliest growth
state is identified. In order for a pixel
to be identified as crop c, each observa-
tion must be identified as being in a
growth stage for crop ¢ and the growth
stages must be chronologically ordered, as
mentioned before. One also has the option
of using crop calendar information. This
limits the growth stages to a specified
range for each observation time.

C. BAYESIAN PERSPECTIVE

The phenological discrimination pro-
cedure is a Bayes classification. 1In
Bayes classification a multi-spectral ob-
servation (xl,...,xN) for N dates 1is

assigned to the class ¢ for which the con-
ditional probability of ¢ given
(xl,...,xN) is highest. Suppose we narrow

the range of values for which
P(c|x1,...,xN) is non-zero. This means

that 1f P(c'xl,...,xN) is non~-zero, then
for any other crop type c', P(c'lxl,...,
xN) is zero in most cases. Therefore,
(xl""’xN) is labeled ¢ by the Bayes

rule. In the phenological discrimination
of ¢ (wheat), the range of values for
which P(c]xl,...,xN) > 0 is narrowed by

use of training sets, crop calendar infor-
mation and chronology restrictions. This
range of values is stored in tabular form.

D. EXAMPLE

An example easily illustrates the
table look-up idea graphically. Figure 4
shows graphs for the tables R(bi,a,c) that
store the growth state signature for cate-
gory c. A square blacked in for coordi-
nates (g,c) means that for the correspond-
ing spectral value a, the phenological
growth stage g belongs to the table R.
Suppose that there are two spectral wave-
lengths band 1 and band 2, two categories,
and two times at which observations are
taken. Let the spectral observation for

time 1 be (9,10) and the spectral observa-
tion for time 2 be (3,6). Examining the
tables for category 1, we have:

R(1,9,1) = {3,5,6,7}
R(2,10,1) = {0,1,2,3,17,18,19}
R(1,9,1) / \R(2,10,1) = {3}

This means that the only time the observa-
tion (9,10) could occur from category 1 1s
during phenological growth stage 3.
Examining the tables for category 2, we
have:

R(1,9,2) = {5,6,7,13,14}
R(2,10,2) = {0,1,7,8,18,19}
R(1,9,2) /" \ R(2,10,7) = {7}

This means that the only time the observa-
tion (9,10) could occur from category 2 is
during phenological growth stage 7. So
after the first spectral observation, both
categories are still possible.

Now consider the second observation
(3,6). By the tables:

R(1,3,1) = {13,14}
R(2,6,1) = {6,7,8,9,13,14}
R(1,3,1) 7 \R(2,6,1) = {13,14)}

This means that spectral observation (3,6)
is possible for category 1 only during
phenological growth stages 13 and 14.

By the tables:
R(1,3,2) {o0,1}

R(2,6,2) {11,12}
R(1,3,2)/ \R(2,6,2) = 8

This means that there is no phenological
growth stage for category 2 which yields
the spectral observation (3,6). The con-
clusion, therefore, is that the small area
ground patch having early spectral return
of (9,10) and later spectral return of
(3,6) must be an area of vegetation cate-
gory 1 observed during its 3 and 13 or 14
phenological growth stages.

I1f instead of the intersection
R(1,3,2) DR(2,6,2) = @, we had

R(1,3,2) VR(2,6,2) = {4,6}, category 2
would be eliminated because the spectral
reflectance it has at a late calendar
time match possible a spectral reflec-
tance for category 2 only at early
phenological growth states 4 or 6. Later
calendar times must correspond to later
phenological growth states.
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ITI. TIDENTIFICATION OF WHEAT IN MORTON
COUNTY USING PHENOLOGICAL DISCRIM-
NATION METHODS

An extensive investigation of the use
of phenological discrimination was carried
out using the Morton County image.  The
phenological discrimination procedure
involves a number of choices for the user.
The procedure involves two steps: (1)
creation of the signature mean and (2)
identification using the mean signature
created in step (l1). The effects of the
choices on the quality of classification
will be discussed. The validity of use of
our dynamic programming method for crea-
tion of mean signature is also investiga-
ted.

A. A DISCUSSION OF RESULTS

Consider the two steps in the dis-
crimination procedure. In the first step
the user chooses an input sample to train
the signature and the number of growth
states to be characterized in the signa-
ture. In the identification step the user
chooses the "signature width" and which
MSS band/observation date combinations to
use. The choice of "signature width" is
critical, especially when one is identify-
ing only one crop class. The larger the
"signature width" the more pixels will be
identified as in the crop class. The per-
cent correct identification will increase
with "width" but at the cost of increased
false identification. 1In the identifica-
tion step the user also has the option of
specifying a range of allowed growth
states for each observation time. A good
choice of these growth state restrictions
effectively cuts down on the number of
false classifications, without much reduc-

tion in the rate of correct classification.

Sample adequacy was investigated by
comparing the discrimination results with
no growth state restrictions using a sam-
ple of 35 wheat field averages and several
random samples of individual pixels. It
seems that a sample of around 100 pixels
(about 2.5 percent of the ground truth
wheat) is of adequate size as discrimina-
tion was not significantly better with a
sample of twice that size or with the
field average samples.

We have performed 4 identifications

of wheat with signatures having 5, 10, 20,
and 36 growth states. This is a range of
one to seven growth states per observation
time, since we have five observations of
the Morton County test site. The general
shape of the mean signatures with differ-
ing numbers of growth states is the same.
Our best discrimination was with a 36
growth state signature with a width of

3.25, Usding this signature and all obser-
vation dates, the results were 83 percent
correct identification of ground truth
wheat and 4 percent false identification.
With a 5 growth state signature with a
width of 6.0, the corresponding figures
were 79 percent and 13 percent. The im-
proved discrimination shows the usefulness
of modeling several growth states per
observation time.

The number of MSS bands needed for
accurate identification was investigated.
Most of our testing of the discrimination
procedure has been done using MSS bands 4,
5, and 6. However, 1t has been found that
MSS bands 4 and 5 are sufficient for good
wheat identification. Adding MSS band 7
reduced correct classification significant-
ly. It was thought that perhaps MSS bands
5 and 7 were more useful for phenological
discrimination of wheat, because they have
often been most useful in other discrimina-
tion procedures in classifying an agricul-
tural scene. The identification of wheat
with MSS bands 5 and 7 turned out not to
be as good as with MSS bands 4 and 5.

The possibility of accurate wheat
identification with 'a single channel of
information per observation time was inves-
tigated. The phenological method of dis-
crimination is a process of identifying
growth stages. It seemed likely, then,
that a single measure, indicating greenness
of the pixel at the observation times,
would be sufficient for identification of
the crop. The four MSS band values for
each observation date were transformed

into Kauth greennessl7, a linear combina-
tion of the band values scaled to fit in
the 0-31 integer value range.

KG = .514(-.290 MSS4 - .562 MSS 5
+ .600 MSS6 + .491 MSS7) (2)
+ 13.6

Wheat didentification with this measure was
not as good as identification with two or
three MSS bands.

Good wheat identification depends on
the proper choice of growth state restric-
tions, especially if a subset of observa-
tion times are used. A description of a
run using only two observation times will
illustrate this. The growth state identi-
fications with a 36 growth state signature
allowed were states 1-5 for observation
time 1 and states 10-12 for observation
time 2. The narrow choice of growth states
allowed for the second observation time,
May 9, is important because winter wheat
is mainly distinguished from other crop
types because it is green on the May 9
date. The growth states 19-12 in the
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signature had low gray tone values in MSS
band 5, which shows that they correspond
to green states. Eighty-one percent of
the ground truth wheat was identified and
5 percent of the non-wheat cells were
falsely labeled wheat.

The best cholce of observation times
was October 23 and May 9 for first-order
discrimination of wheat. The best single
observation time turned.out to be May 9,
as expected. The October 23 observation
turned out to be the best addition to the
May 9 observation. A third observation
improved results significantly only when
wheat was broken into two categories-—-
quickly maturing wheat and slowly maturing
wheat. The same 36 growth state signature
was used to identify both subcategories of
wheat, but with two sets of growth state
restrictions. This discrimination result-
ed in a total of 83 percent of the wheat
being identified, with only 4 percent
false classification.

B. TESTING THE VALIDITY OF DYNAMIC PRO-
GRAMMING IN MEAN SIGNATURE GENERATION

Recall that different observation
times map into the same growth state in
the construction of the mean signature.

In order to test whether it is good to
allow observations from different times to
be used in the comnstruction of growth
state, an alternate procedure was tested.
Let us say we have G0 as the number of

growth states per observation time. In
each iteration we define a mapping m:
T

(j,t) = G which minimizes 2 : max
. t=1 i
|x(bi,j,t) ~vu(m(j,t);bi)] for each sample

jJ with the additional restriction that the
pair (j,t) must map into one of the growth
states in the set {(t - 1)G0 + 1,

(t - l)G0 + 2,...,G0t}. Because these

sets are not overlapping, the method for
finding the mapping turns out to be a
simple minimization.

A few phenological discrimination
runs using five observation dates were
made using mean signatures generated by
simple minimization. Discrimination was
not quite as good as with similar rums
using dynamic programming. ' The average
standard deviation by band and growth
state for the samples mapped into 20
growth states was higher with simple mini-
mization. This demonstrates the validity
of combining observations with different
dates in characterizing a signature
growth state.

C. AN EXPERIMENT WITH USE OF TWO SIGNA-
TURES FOR WHEAT

Discrimination with a fairly small
signature width results in about half the
wheat being identified with a very small
amount of false identification, when ap-
prolate growth state restrictions are
used. It was thought that perhaps wheat
is better characterized by two or three
signatures with small widths. Our experi-
mentation did not lead to improved classi-
fication, but provides imnsight into the
properties of the growth states in the
signature.

A sequential procedure was used.

'Areas of wheat which were poorly identi-

fied by phenological discrimination were
examined. 1t seemed that there were two
types of wheat not being identified. One
type was wheat with reflectances generally
higher than average for all MSS bands on
all observations. The other type was
wheat with generally lower than average
reflectances, especially for MSS bands 4
and 5 on the May 9 observatilon. In order
to try to identify these problem areas of
"high" and "low" wheat, signatures were
created from samples of wheat not yet
identified. A "high" signature was crea-
ted from pixels in this sample whose
quantized values in MSS bands 4 and 5

on the May 9 observation was below a
threshold of 6. A "low" signature was
created from pixels whose values in MSS
bands 4 and 5 on the May 9 observation
was above 8. "High"™ and "low" wheat was
clagssified with these signatures. Areas
identified as "high" and "low" wheat were
quite distinct.

The areas of "high" and "low" wheat
were examined on the aerial photographs of
Morton County. It was noted that small
"low" wheat areas within fields were often
near field borders, and are probably weedy
areas. High areas within fields were
often in areas that appeared to be high
ground or light-colored, poor soil.

We also investigated the "high" and
"low" wheat by looking at field mean of
Kauth greenness and Kauth soil brightness,
Kauth is a linear combination of the MSS
band which we rescaled to fit in the 0-31
value range:

KSB = .522(.433 MSS4 + .632 MSS5
+ .586 MSS6 + .264 MSS7) (3)

Fields identified as primarily "high"
wheat were areas of high KS8B and about as
much as KG as field with predominantly
"low" wheat, except on the May 9 date
when they were "greener".
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We investigated further by examining
the samples for the "high" and "low" sig-
nature. We looked at a 36 growth stage
signature created from a random sample of
ground-truth wheat and found which growth
states each observation of the sample
mapped to. "Low" samples are mapped into
relatively earlier growth states compared
to the high reflectance samples, except
for the October 23 observation.

. The explanation which seems most con-
sistent in explaining the "high" and "low”
areas 1s that "high" areas are poor
quality stands of wheat, high are adver-
sely effected by the dry weather in Morton
County in 1974 or by poor soil. The "low"
areas are vigorous stands of wheat, or
areas with a lot of weeds. Vigorous
stands of wheat mature more slowly than
stands maturing in less than optimal con-
ditions. The dryer fields will be the
first to head, and therefore, look less
green on May 9.

D. COMPARISON OF PHENOLOGICAL DISCRIMINA-
TION WITH OTHER PROCEDURES

We identified wheat using Bayes table
look-up and unsupervised clustering pro-
cedures developed at the University of
Kansas Remote Sensing Laboratory and
linear discrimination as implemented in

the BMDP package30. In our best phenologi-
cal discrimination runs, we achieved about
80 percent correct identification of wheat
with about 5 percent false identification,
with 83 percent and 4 percent when all
observation dates were used. This is
about as good as wheat identification by
the linear discrimination method, which
resulted in 84 percent wheat identifica-
tion and 4 percent false identification of
wheat. Wheat identification was much
better than with a Bayes table look-up

method26. In the case of these methods,

however, multiple discrimination of sev-
eral crops was carried out. The pheno-
logical method identified the wheat

fields much better than unsupervised clus-
tering. This method had trouble identify-
ing wheat fields that were clustered with
summer fallow, probably because wheat
fields were abandoned.

The growth state identification made
in the discrimination process are the
earliest growth states consistent with the
multi-spectral observations, allowed
growth states for observation date, and
the requirement that growth states by
chronologically ordered. In order to use
the growth state identification for infor-
mation on crop maturity, it might be
better to identify "best" consistent
rather than earliest consistent growth

states. Our identification may also be
improved if our signature width varies
with band and growth state. This idea 1led
to limited testing of the use of "second-
order" growth state signatures. These
signatures account for covariance of spec-
tral bands, as well as allowing signature
width to vary with band and growth state.
It i1s too early to tell 1f the second-
order signatures will lead to improved
classification or give better information
about crop maturity.

III. CONCLUSION

The phenological growth state pro-
cedure seems to be able to discriminate
wheat about as well as some more standard
procedures and label degree of maturity
as well. Discrimination is comparable to
discriminant analysis on Kansas wheat.
The phenological method also identified
corn well on a small site in Iowa.

REFERENCES

1. Bernstein, R., "Digital Image Pro-
cessing--Past, Present, and Future,"
Proceedings of the International Sym-
posium on Image Processing, Interac-
tions with Photogrammetry and Remote
Sensing, Graz, October 3-5, 1977.

2. Kaneko, T., "Crop Classification Using
Time Features Computed from Multi-
Temporal Multi-Spectral Data,'" 1978
Pattern Recognition Conference, Japan,
1978.

3. Engvall, J.L., J.D. Tubbs, and Q.A.
Holmes, "Pattern Recognition of LAND-
SAT Data Based Upon Temporal Trend
Analysis,” Remote Sensing of Environ-
ment, Vol. 6, 1977, pp. 303-314.

4, Misra, P.N. and S.G. Wheeler, "Crop
Clagsification with LANDSAT Multi-
Spectral Scanner Data,' Pattern
Recognition, Vol. 10, 1978, pp. 1-13.

5. Megier, J., "Multi-Temporal Digital
Analysis of LANDSAT Data for Inven-
tory of Poplar Planted Groves in
North Italy," Proceedings of the
International Symposium on Image
Processing, Interactions with Photo-
grammetry and Remote Sensing, Graz,
October 3~-5, 1977.

6. Carlson, R.E. and C. Aspiazu, "Crop-
land Acreage Estimates from Temporal,
Multi-Spectral ERTS-1 Data," Remote
Sensing of Environment, Vol. 4, 1975,
PP. 237-243.

1979 Machine Processing of Remotely Sensed Data Symposium

110




10.

11.

12.

13.

14.

15.

16.

Kanemasu, E.T., "Seasonal Canopy Re-
flectance Patterns of Wheat, Sorghum,
and Soybeans," Remote Sensing of .
Environment, Vol. 3, 1974, pp. 43-47.

Landgrebe, D., "Computer-Based Remote
Sensing Technology--A Look to the
Future," Remote Sensing of Environ-
ment, Vol. 5, 1976, pp. 229-246.

Vinogradov, V., "Remote Sensing in
Ecological Botany," Remote Sensing of

Environment, Vol. 6, 1977, pp. 83-94.

Morain, E.G., '"Kansas Environmental
and Resource Study: A Great Plains
Model--Extraction of Agricultural
Statistics from ERTS-1 Data of Kan-
sas," Final Report, University of
Kansas Center for Research, Inc.,
NASA Contract NAS5-21822, Task 4,
1974.

Kalensky, Z. and L.R. Scherk,

"M"Accuracy of Forest Mapping from

LANDSAT Computer Compatible Tapes,"
Tenth International Symposium on
Remote Sensing of Environment, Ann
Arbor, Michigan, October 6-10, 1975.

Swain, P.H., "Land Use Classification
and Mapping by Machine-Assisted Anal-
ysis of LANDSAT Multi-Spectral
Scanner Data," Final Report, Purdue
University, LARS, USGS Contract
14-08-0001-14725, 1976.

Von Steen, D.A. and W.H. Wigton,
"Crop Identification and Acreage
Measurement Utilizing LANDSAT
Imagery," Statistical Reporting
Service--U.S. Department of Agricul-
ture, March 1976.

Landgrebe, D.A. et al., "A Study of
of the Utilization of ERTS-1 Data
from the Wabash River Basin," Final
Report, Purdue University, LARS,
NASA Contract NAS 5-21773, 1974.

Nalepka, R.F., J.E. Colwell, and

D.P. Rice, "Forecasts of Winter Wheat
Yield and Production Using LANDSAT
Data,'" Final Report, University of
Michigan, ERIM, NASA Contract NAS 5-
22398, December 1977.

Erickson, L.D. and R.F. Nalepka,
"PROGRAMS: A Second Generation Mul-
ti-Spectral, Multi-Temporal Process—
ing System for Agricultural Mensura~-
tion," Purdue University, Purdue:
LARS Symposium Proceedings on Machine

Processing of Remotely Sensed Data,

IEEE Catalog Number 76CH1103-1
MPRSD, 1976.

17.

18.

19.

20.

21.

22.

23.

24,

Kauth, R.J. and G.S. Thomas, "The
Tasselled Cap--A Graphic Description
of the Spectral-Temporal Development
of Agricultural Crops as Seen by
LARS Symposium

Remotely Sensed Data, IEEE Catalog
Number 76CH1103-1 MPRSD, 1976.

Kauth, R.J., A.P. Pentand, and G.S.
Thomas, "BLOB: An Unsupervised
Clustering Approach to Spatial Pre-
processing of MSS Imagery," Eleventh
International Symposium on Remote
Sensing of Environment, University of
Michigan, ERIM, 1977. :

Carlson, Maestede, Fenton, Thomson,
and Epstein, "Remote Sensing in Iowa
Agriculture: Identification and
Classification of Iowa's Crops,
Soils, and Forestry Resources Using
ERTS-1 and Complimentary Underflight
Imagery," Final Report, Iowa State
University, NASA Contract NAS 5-21839
1974. ' ‘

Salmon and Drexler, "Reducing LANDSAT
Data to Parameters with Physical
Significance," Proceedings of the
Eleventh International Symposium on
Remote Sensing of Environment,
University of Michigan, ERIM, 1977.

Gammon, P.T., D. Malone, P.D. Brooke,
and V. Carter, "Three Approaches to
the Classification and Mapping of
Inland Wetlands," Proceedings of the
‘Symposium on Remote Sensing of Envir-

onment, University of Michigan, ERIM,
1977.

Gammon, P.T. and V.P. Carter, "Com-
parison of Vegetation Classes in the
Great Dismal Swamp Using Two Indi-
vidual LANDSAT Images and a Temporal
Composite,"™ Purdue: LARS Symposium
on Machine Processing of Remotely

CH1103-IMPRSD, 1976.

Flores, L.M. and D.T. Register,
"Evaluation of Classification Pro-
cedures for Estimating Wheat Acreage
in Kansas," Purdue: LARS Symposium
Proceedings on Machine Processing of
Remotely Sensed Data, IEEE Catalog
Number 76CH1103-1 MPRSD, 1976.

Le Toan, T.Y., C. Cassirame, and J.

Quash, "Inventory of Rice Fields 1in
France Using LANDSAT and Aircraft

Data,'" Proceedings of the Eleventh
‘Symposium on Remote Sensing of En-

vironment, University of Michigan,

ERIM, 1977

1979 Machine Proéessing of Remolely Sensed Data Symposium

111




25. Bauer, M.E., "The Role of Remote
Sensing in Determining Distribution

" - -
and Yield of Crops, Advances in ORONTH STATE 1 RITH 41 SAMPLES GROWTH STATE 11 NITH 48 SAMPLES
Agronomy, Vol. 27, 1975, pp. 271-304. 1907 26 188 24 LT 1090 17.69 1602
gronomy L9 L% 245 n L2 L1 0ss  1;
26. Haralick, R.M., '"The Table Look-Up WWE%W2$E 3 sarues ni 'mmyﬂmumm 24 SHPLES
; : B ) @ BB 1804
Rule," Communication Statis. Theor. L33 113 048 Lu LM 1a :u Tg
Math A5, Vol. 12, 1976 . 1163~
s 12, 9 > PP GROWTH STATE 3 NITH 33 SAPLES GROWTH STATE 13 WITH 21 SAMPLES
1191. 152 1e 1076 % 9.3 1082 133 157
‘ [ T Y ) 113 1e L ru
27. Haralick, R.M. and W.F. Bryant, WMTmm4mm 16 SAHPLES GROTH STATE 14 NITH 29 SAMPLES
" : L5 163 200 0¥ N 128 15A4 g
Documentation of Procedures for " 230 280 0% 244 L3 L% 116 18
Textural/Spacial Pattern Recognition RONTH STATE. §
HITH 52 SAWLES GROWTH STATE 15 4ITH 21 SWPLES
Final Report, University of Kansas &85 802 9.3 124 .29 LM 9 wn
Center for Research, Inc., RSL Tech- 08 08 0% 0% Ls wm 200 1M
nical Report 278-1, April 15, 1976. CRMTH STATE & NITH 37 SWPLES GROWTH STATE 16 HITH 46 SAPLES
449 443 195 12.54 14.83 1546 16.59 1.7
LY te a0 L7 L ST Lw

28. Bryant, W., R.M. Haralick, D. Johnson,

G. Minden, C. Paul, and A. Singh, mm§ﬁm7?z "?ﬁ“ mmm??”ﬁm'smﬂﬁ
"KANDIDATS II -- Kansas Digital Ly inm i '.3.33 te i o by

Image Data System," University of

GROWTH STATE § WITH 10 SAWLES GROTH STATE 18 WITH 20 SAHPLES
Kansas Center for Research, Inc., 49 7220 1w 1% WS 1540 1285 208
RSL Technical Report 0920-2, Septem~- 13 e 2@ 18 izt e 0w
ber 1976. OROWTH STATE 9 WITH 31 SAMFLES GROWTH STATE 19 WITH 26 SAYPLES
887 10.32 10.58 1255 17.68 17.58 2089 8%
. . 113 103 116 0.94 LS5 084 L4 149
29. Haralick, R.M. and J. Kartus,
" " GROWTH STATE 10 WITH 30 SRIPLES GROWTH STATE 20 HITH 47 SRMPLES
Arrangements and Homomorphsisms, T %10 158 M 2002 10 2% 20
JEEE Transations on Systems, Man, and 0% 0%t 042 - 1D 1.7 el LSt 2w
Cybernetics, August 1978.
30. Dixon, W.J., BMDP--Biomedical Compu- Table 1. The averages (which constitute

ter Programs, University of Califor- mean signature) and standard
nia, Berkeley Press, 1975. . deviations by growth state and

MSS band of subsamples of a
120 wheat pixel sample of the
Morton County Intensive Test

31. Neely, P., "REGRESS-~-Stepwise Multi-
ple Linear Regression Program" and
"PRINCOMP-~-Principal Components Pro- site. The first row of numbers
gram," University of Kansas, Academic are band means and the second

i Cent -1974. row of numbers are band stand-
Computing Center, 1971-1974 ard deviations.

32. Toussaint, T., "On the Divergence
Between Two Distributions and the
Probability of Misclassification of
Several Rules,'" Proceedings of the
Second International Joint Confer-

‘ ence on Pattern Recognition,

i Copenhagen, Denmark, August 1974.

33. Ball, G.H. and D.J. Hall, "ISODATA,
A Novel Method of Data Analysis and
Pattern Classification," Stanford
Research Institute, Menlo Park,
California, April 1975.

34. Hlavka, C.A., S.M, Carlyle, R.M.
Haralick, and R. Yokoyama, "A Compre-
hensive Data Processing Plan for Crop
Calendar MSS Signature Development
from Satellite Imagery - Crop Iden-
tification Using Vegetation Phenolo-
gy," University of Kansas Remote
Sensing Laboratory, RSL Technical
Report 286-5, Final Report, July
1978.

1979 Machine Progessing of Remotely Sensed Data Symposium
112 ' o ' o




oy

Graytone MSS Band 4

Graytone MSS Band 5

+ Growth State Corresponding
to an Observation Time

* Interpolated Growth States

20 . e 20 .
1. 2 .
£ . +
. @ .
4 +. a + +
.
+ g . .
. . . @ - .
; ot g |+ .
. * £ L
. + ® +
g ~4
5 +, 3
- !
5 T ¥ ‘zo 15 T T ‘120
Growth State . Growth State
. + :
20 ~20{ , +°
q . © .
+ - < .
. . kS . R
. wy . .
4 + v +
- . = .
+ -+ .
. @
g . ‘ £ - *
. + 8
. 2
&
5 + ., 5
T T T 1 T Y T J
20 5 20
Growth State . Growth State
Figure 1. Final mean wheat signature for Morton County test site.
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