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A PARAMETRIC MODEL FOR MULTISPECTRAL SCANNERS

BIJAN G. MOBASSERI, CLARE D. MCGILLEM, AND
PAUL E, ANUTA

Purdue University

I. ABSTRACT

Efficient acquisition and utilization
of remotely sensed data requires an exten-
sive a priori evaluation of the perfor-
mance of the basic data collection unit,
the multispectral scanner. The objective
is the development of a fully parametric
technique to theoretically evaluate the
systems response in any desired operational
environment and provide the necessary in-
formation in selecting a set of optimum
parameters.

In this paper the multispectral scanner
spatial characteristics are represented by
a linear shift-invariant multiple-port
system where the N spectral bands comprise
the input processes. The scanner charac-
teristic function, the relationship govern-
ing the transformation of the input
spatial and hence spectral correlation
matrices through the systems, is developed.
Specific cases for Gaussian point spread
functions are examined.

The integration of the scanner spatial
model and a parameter classification error
estimator provides the necessary technique
to evaluate the performance of a multi-
spectral scanner. A set of test statistics
are specified and the corresponding output
quantities computed by the characteristic
function. Two sets of classification
accuracies, one at the input and one at
the output are estimated. The scanner's
instantaneous field of view is changed
and the variation of the output classifica-
tion performance monitored.

* This work was sponsored by the National
Aeronautics and Space Administration under
Contracts NAS9-14016, and NAS9-14970 and
NAS9~-15466.

II. INTRODUCTION

An important class of remote sensing
systems has as its primary goal the collec-
tion in selected spectral bands of reflected
or emitted electromagnetic energy. This
data is then used to identify and character-
ize the sources of the radiation. A widely
used earth resources data gathering system
of this type is the electro-optical scanning
radiometer commonly referred to as a multi-
spectral scanner (MSS). 'The signal degrad-
ations caused by various transformations
within the scanner subsystem strongly affect
system performance. The finite scanner
aperture and the atmospheric and quantiza-
tion noise are but some of the contributing
factors. The optimization of the entire
set of interactive parameters within the
scanner can be quite involved. The classi-
fication accuracy obtained by processing
the actual data is necessarily suboptimum
due to the aforementioned degradation
sources. A reference probability of mis-
classification (PMC) could be defined by
analyzing the performance using the reflec-
ted signal at the scanner input, even
though this signal is obviously inaccessible.
By simulating a theoretical model for the
MSS the classification error rate can be
evaluated and compared at the scanner input
and output thereby establishing an upper
bound on the system performance in the
context of the defined index of performance.
Arbitrary spatial resolution can be speci-
fied and its interactive relationship with
the SNR and PMC studied.

The projected algorithm will have
several capabilities. The most important
one is the ease of parameter manipulation.
Variation of the scanner spatial resolution
will cause the output statistics to be
modified with a corresponding variation in
the estimate of the classification error.
Similarly, variations in the population
separability at the scanner input and the
resulting interaction with the PMC can be
studied.
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This built-in flexibility is a desir-
able and almost imperative feature of the
scanner system modeling., A specific exam-
ple is the class statistics manipulation.
The generation of a new data set, with
prescribed statistics, requires appropriate
software and, depending on the data base
magnitude, can be potentially time con-
suming. The alternative in the proposed
algorithm is to supply the data statistics
instead of the data samples.

Modeling of the MSS by a linear system
opens the way to the application of exist-
ing techniques in system theory. Since
the classification accuracy of MSS data
is totally a function of class statistics
under the Bayes rule, examination of the
random process transformation carried out
by the scanner PSF can provide much useful
information. Topics of particular interest
are

1. Effect of the scanner IFOV on
population statistics.

2. Effect of data spatial corre-
lation on the classification
accuracy.

3. Effect of signal-to-noise
ratio on classification
accuracy.

4. Trade off between spatial
resolution and SNR.

5. Effect of spatial resolution
on classification accuracy.

6. The interactive relationship .
between IFOV, spatial correla-
tion, class statistics, SNR
and classification accuracy.

IIT. MSS SPATIAL MODEL

The averaging operation performed by
the scanner point spread function can be
modeled by a linear shift-invariant multi-
ple-input, multiple-output system. Input
signals consist of N random processes in N
spectral bands corrupted by atmospheric
noise and scattering. Each input is
linearly transformed by the scanner PSF
and additional detector and pre-amp noise
further contribute to the signal degrada-
tion.

Fig. 1 is a block diagram of this
spatial model. h(x,y) is the two dimen-
sional PSF to be specified for any desired
system. In particular where the MSS is
concerned, the assumption of a Gaussian
shaped IFOV has been widespread. The
justification for this is essentially

satisfactory experimental results and per-
haps equally important is the mathematical
convenience of this model. Note that the
results obtained hereafter are fundamentally
independent of the functional form of the
PSF. However, using this assumption, it is
frequently possible to obtain closed form
expressions and to make comparisons with
alternate methods a majority of which

adhere to the same assumption.

In a two dimensional plane a Gaussian
PSF is specified by the following relation-
ship

2 2
- X - Y
2 2
o o
hix,y) = c,e e (1)

The important parameter is ro, the PSF's
characteristic length, which in effect
determines the ultimate ground resolution
and noise content of the collected data.
Increasing r, results in a deterioration of
the resolution but improvement in the SNR.
An important property of h(x,y) is its
separability in the cross and along-track
directions resulting in some simplifications
of the analytical relationships governing
the scanner operation. In practice, h(x,y)
is truncated at some point, (e.g., 0.1 h{(0,0))
to keep the computation time down. The
normalizing constant cj, provides a unity
gain for this averaging operation.

A. MSS STATISTICAL MODEL AND SPATIAL
CORRELATION

As the input random processes undergo
a linear transformation, so do their
statistical properties. In order to inves-
tigate the various interactive relation-
ships outlined previously, an understanding
and knowledge of the signal flow through
the scanner is essential.

Relating the statistics of the multi-
spectral signal at the scanner output to
the corresponding part at the input can be
accomplished in various ways. It has been
pointed out that a two dimensional convolu-
tion is equivalent to a matrix multiplica-
tion in which one matrix is block circulant!.
Let F and G be the input and output matrices
arranged in P2x1 column vectors. Then they
are related by -

G = HE (2)
where PSF matrix H, has the following
structure -
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Hy Hpy *°° Hy
Hy Hy - Hy
H = .
_ H1’—1 HP—2 Ho J

Each element in H is itself a P x P matrix.
"For a particular case, a selected number of
fields can be chosen and processed by (2)
to produce the G matrix followed by the
calculation of @ pooled auto~ and cross-

spectral correlation matrix.

This method has the advantage of
requiring no a priori spatial information
yet its data dependent nature makes the
results of ,any study limited to the parti-
cular data set used. The more general
approach, providing possibly closed form
expressions for the quantities desired, is
the application of linear system theory
techniques to the MSS. This, however,
requires some a priori specification of
data properties in an algebraic form, the
main item being the spatial correlation
model. '

Comparatively speaking, spectral
classification has been much more widespread
than spatial classification, resulting in
less than full attention to the spatial
properties of remotely sensed data. It has
been suggested, however, that the experi-
mentally observed correlation functions
approximately follow a decaying exponen-
tial?/3%. This assumption implies a Markov
model for the spatial characteristics of
the data. Let Ry be the spatial correla-
tion matrix of Eﬁe kth spectral band

R, = [rij] i,j=0,1, ..., n -1 (3)

Under the two assumptions: (a) Markov
correlation structure; and (b) separability
along the cross-track and along-track
directions, Ry can be specified as follows

(4)

i,j=0,1, ..., no—l

where Py and p are the adjacent pixel
k k
correlation coefficients along the respec~

tive directions given by

p = e (5)

Similarly, the spatial crosscorrelation
matrix between two bands p and q is defined
as

—Pa 1j qu qu
(6)
i,j=60,1, ..., n -1
where
-a
o, = o P4
Pa
(7)
-b
py = e P4
Pq

With the correlation model defined,
the output spectral covariance matrix can
be specified. Let Rg.g. and ILg be the

295 L

output spatial correlation matrix between
spectral bands i and j and output covariance
matrix, respectively, then
L (i,3) = [Rr (0,0)]
-9 —gigj
(8)
i,j=1, 2, ..., N

Note that when considered over the ensemble
of all the bands, matrix R4y is an (ng x N)
(n, x N) partitioned matrixk, given by

F[gglgl] [gglgzl X [gglgn]'
R, o1 IR, o1 e IR ]
- | 2% 9292 2% | 1,

&'JU

-[I_{gNg].] s e s e e o [BgNgN]J

where [Bij] is the ng X np spatial correla-
tion matrix. Zg however, is only a function
of zero lag elements of Rg, ggig_(o,O).

Therefore, only N x N out of (ng”x N)

(no x N) entries of Rg need be calculated.
It is clear that the spectral correlation
matrix is a small subset of spatial correla-
tion matrices whose elements have the
following locations.

I (1,3) = By ((i-Ling, (3-1)ng)

. (10)
i,j =1, 2, ..., N
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IV. SCANNER CHARACTERISTIC FUNCTION

In order to determine the effects of
different scanner IFOV's and their inter-
action with the classification accuracy of
a data set, 1t is essential that the
required output covariance matrices be
parametrically represented in terms of
known input quantities. In the above it
was noted that the entire spectral covari-
ance matrix is specified if the appropriate
spatial correlation functions are known.
Let f(x,y), g{(x,y) and h(x,y) denote the
input and output random processes associ-
ated with any two matching bands and the
scanner PSF, respectively. It is well
known that the above quantities are related
by a convolution integral.

g(x,y) = JJf(x—lry—kz)h(kl,Xz)dlldkz

(11)

In order to derive specific results, a
spherically symmetric Gaussian PSF is
considered. The spatial correlation
matrix describing the scene is a two
sided exponential.

A. GAUSSIAN SCANNER PSF

The PSF and spatial correlation model
are given by

Reo(T,n) = plT|pln|
x2 2 (12)
_ TTx 327 xr 2
hix,y) = c, eo” eo

where pg = e™@ is the adjacent pixel
correlation assumed equal along the hori-
zontal and vertical directions. This
assumption is not in contradiction with

the fact that in a Landsat data set sample-
to-sample correlation is higher than line-
to-line correlation because of the closer
physical distance between the samples. 1In
the continuous domain, such as this formu-
lation, where theoretically equally spaced
lines and columns can exist, there is
little reason for assuming different pixel-
to-pixel correlation along each direction.
Two quantities, cj and r, specify the PSF
where cj is a normalizing constant provid-
ing unity gain and rg is the filter's
characteristic length, closely related to
the IFOV.

With the parameters of the problem
defined, the scanner output correlation
function can be expressed as;

Sgg(u,v) = Sff(u,v)lH(u,v)|2 (13)

where S(u,v) is sgectral density. Let

M(u,v) = |H(u,v)|?, then
Rgg(T,n) = Ree(Tym) *m(T,n) (14)
2 n2
2=~ -
nc%ro 2r 2 2r 2
m(t,n) = 5 e" "o o (15)

Using the separability property of the
functions involved and carrying out the
integration,

a2r2

2 S - at T

Rg(r,n) = le Q(aro-;—)

| 0

2
2.2
a'rg
7 ~at T
+ e Q(ar0 -—r—)

o | (17)

The above relationship can be easily
modified to cover the case of unequal
pixel-to-pixel correlation along cross-
track and down-track directions. If
Rff(r,n) is given by

Ree(T,n) = emaltl g-bIn]

Then it follows that

@
(o]
Q
-
=
1
)
©
o
G
o
1
|

2.2
b L

+ bn
e z Q(bro+ %L)
o (18)

Note that since the input process f(x,y)
has a unity variance Rgg(0,0) is in effect
a weighting by which any input variance
will be multiplied to produce the corre-
sponding output spectral variance. The
right hand side of (18), therefore, can be
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considered as a weighting function associ-
ated with any multiband scanner to relate
input and output statistics. Denote this
function by Wg(t,n,a,b), the scanner
characteristic function.

The next item of interest is the out-
put crosscorrelation among channels. This
quantity, designated by Rgig_(Trn){ is a

straight forward extension o% the method
just described. Again assuming a. Markov
or exponential structure governing the
crosscorrelation function between channels

-a, .| 1] -b..|n|
Re g (/) Hoe
1]

(19)

and following identical techniques, the
crosscorrelation coefficient between
channels i and j at the scanner output is
given by '
. _ WS(OIO,aij,?ij) .

. f.f

9.9 % % .
i7j WS(O,O,aii,bii) WS(O,O,ajj,bjj) i75

(20)

where sg £, is the input crosscorrelation

i
coefficien%. Therefore, the band-to-band
correlation coefficients are identical at
scanner input and output provided spatial
auto~- and crosscorrelation functions at
the input are equivalent, i.e., a,. =

a.., b.. = Db... 11

ij ii ij

Evaluating Wg(t,n,a,b) for all values
of T and n can complete the entire output
spatial matrix Rg. The Bayes classifier,
however, is not a spatial classifier but,
rather, is a spectral one and, as a result,
the knowledge of a N x N spectral
covariance matrix is sufficient for
classification purposes. Using a paramet-
ric model provides a considerable flexibil-
ity in system analysis. For example, Wg
can selectively supply any entry of the
output spatial matrix desired. Here,
WS(T,n,a,b)|T=n=0 can complete the output
spectral covariance matrix

(a+b?) 2

2 ro
ws(o,o,a,b) = 4e Q(aro)Q(bro)
(21)

When the input random process is a two
spectral band data set, the output spectral
correlation matrix, Sg is given in terms

of §f as follows:

1 s
< - £,
S¢
] 1
W (0,0,a;,,b 5 )
. W2(0,0,a,,,b,.)W(0,0,a,,,b,,) f1f2
s U111l s Y2222
S =
_g
i 1

(22)

It is clear that, depending on the
particular value of Wy, the output correla-
tion matrices, and hence, classification
accuracies will be modified. The variations
of Wg as a function of scene correlation
and scanner spatial parameters can be very
illuminating. For a Gaussian scanner PSF,
Wg is plotted vs. the sample-to-sample
correlation for a fixed line-to-line
correlation. The IFOV is used as a running
parameter, Fig. 2. The adjacent sample
correlation coefficient ranges from a near
white noise 0.1 to total correlation of 1
(constant signal amplitude). The selected
line-to-line correlation is 0.8.

Examination of the variations of Wg
reveals several important features. Since
0 £ Wg < 1, the output channel variances
are always smaller than the corresponding
input quantity. This is a widely observed
feature of any scanner system due to the
averaging property of the system's PSF.
Fig. 1 shows that for any combination of
scene correlation Wg is a decreasing
function of IFOV size. Also, for a fixed
IFOV, Wg is an increasing function of
scene correlation. The spatial properties
of a scene play a significant role in the
overall system performance which is not
readily obvious. One of the well known
properties of linear systems with random
inputs is the reduction of the output
variance/input variance ratio (Wg) as the
PSF is widened. Specifically, with
everything else fixed, a process having a
moderate scene correlation will undergo a
tighter clustering around its mean than an
otherwise identical process with highly
correlated spatial characteristics. On the
extreme side of the correlation scale with
small pixel-to-pixel correlation, the ratio
of the output to input variance is very
negligible.

V. CLASSIFICATION ACCURACIES
AT THE MSS OUTPUT

A hypothetical three population three
feature data set is used for test purposes.
The set is completely specified by the
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following spectral correlation matrices
corresponding to two visible and one
infrared band.

Fl 0.75 0.15]
S, = 1 0.45],
_fl

b l —

1 0.8 0
S = 1 0.1 I3
_.f2

_ 1 ]

[1  0.94 0.15]
S, = 1 0.05
_f3

These statistics were selected after
examinations of the correlation matrices
obtained for different cover types‘. Aan
attempt was made to choose correlation
structures that would approximately
represent some typical cases, albeit
crudely. Whether this is true or not,
however, has little bearing on the results
of this simulation process. The data is
processed through the scanner for two
different adjacent sample correlations of
0.5, and 0.95. For each case, the IFOV is
varied from 1 to 8 high resolution pixels.
The output spectral statistics are computed
using the scanner characteristic function
followed by the estimation of Bayes classi-
fication accuracies using the ACAP algo-
rithm. The results are shown in Fig. 3
and 4.

The variations of the output prob-
abilities of correct classification are in
complete agreement with those projected by
the characteristic function. The most
notable feature is the inverse relation-
ship between the scene spatial correlation
and the slope of Pcim. vs. IFOV at the
output. When the s efie is spatially,
highly uncorrelated such as Fig. 3, Pg
gained 16.2% by increasing the IFOV from 1
to 2 pixels wide, whereas, the same increase
in IFOV produced a gain of only 0.9% when
px = 0.95. This behavior can be predicted
from the variations of Wg vs. py. Refer-
ring to Fig. 2 where Wg is plotted, it is
observed that the one step reduction in
input variance gets progressively smaller
toward higher scene correlations. For
the test case under study where any reduc-
tion of the class variances along a feature
axis can contribute to increased separabil-
ity, the aforementioned property of Wg
accounts for the changing slope of Pc|w
over the ensemble of the scene

spatial correlations.

VI. SUMMARY AND CONCLUSIONS

The objective of this study was to
employ the ACAP error estimation technique
and MSS model in an integrated parametric
package that would produce the theoretical
response of the MSS in a fully controllable
environment. The results presented are not
intended to be exhaustive but rather to
demonstrate the method and to illustrate
general trends in the system response. It
is constructive to compare the patterns
observed with those obtained by other
simulation techniques.

A parallel study aimed at the same
objectives is reported by Landgrebe®. High
resolution aircraft MSS data was considered
with a cascade of simulated scanner PSF's
to produce data sets with 30 m, 40 m, S50 m
and 60 m ground resolutions and the classi-
fication performance was estimated for
each case. The results provided less than
conclusive evidence on the monotonic rela-
tionship between classification perfor-
mance and the .IFOV due to the very small
rise in Po as IFOV was enlarged. This
conclusion can be fully understood from
the theoretical curves of P, vs. IFOV,

The significant parameter, data spatial
correlation, 1is what determines how
strongly classification performance and
IFOV are interrelated. As for a real data
set, its spatial correlation structure is

a fixed parameter. In case of high resolu-~
tion aircraft data, pixel-to-pixel correla-~
tion can be as high as 0.9 or 0.95. Fig. 4
with px = 0.95 clearly illustrates that

P- and IFOV are indeed weakly coupled.

Had the data under investigation by
Landgrebe® been less spatially correlated,
this coupling would manifest itself more
strongly. For satellite data having a Py
of about 0.75-0.8, Pc shows considerably
stronger sensitivity to variations of IFOV.
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Fig. 1. MSS Spatial Model as a Linear System.
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