Reprinted from
Symposium on
Machine Processing of

Remotely Sensed Data

June 27 - 29, 1979

The Laboratory for Applications of
Remote Sensing

Purdue University
West Lafayette
Indiana 47907 USA

IEEE Catalog No.
79CH1430-8 MPRSD

Copyright © 1979 IEEE
The Institute of Electrical and Electronics Engineers, Inc.

Copyright © 2004 IEEE. This material is provided with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of any of the
products or services of the Purdue Research Foundation/University. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

A METHOD FOR CLASSIFYING MULTISPECTRAL REMOTE
SENSING DATA USING CONTEXT
AND

PHILIP H. SWAIN, HOWARD J,

BRADLEY W, SMITH

SIEGEL,

Purdue University

ABSTRACT

A statistical model of spatial context
is described and procedures for classifying
remote sensing data using a context classi-
fier are outlined. Experimental results
are presented. Because the computational
requirements of the context classifier are
very large, its implementation on parallel/
pipelined multiprocessor systems is being
investigated. Some of the special consider-
ations necessary for such implementations
are described, with particular reference to
implementation on an array of Control Data
Corporation Flexible Processors.

I. INTRODUCTION

For more than a decade, efforts to
extract information from multispectral
remote sensing image data have proved
increasingly successful. To a large extent,
these efforts have focused on the applica-
tion of pattern recognition techniques to
the multispectral measurements made on
individual ground resolution elements; i.e.,
scenes have been classified pixel-by-pixel
based on the measurement vectors associated
with the individual pixels!. Progress has
been achieved through development of
increasingly sophisticated methods for ex-
tracting information from the spectral do-
main to characterize the classes of inter-
est.

However, there are many applications
for which the classes of interest can be
better characterized if the spatial infor-
mation in the remote sensing data is
utilized in addition to the spectral
measurements. Characteristic spatial
features include, for example, shape,
texture, and structural relationships.

—
This work was sponsored in part by the

National Aeronautics and Space Administra-
tion under Contract NAS9-15466.

Some interesting and useful research has
been accomplished in recent years in the
direction of incorporating spatial informa-
tion into the data analysis process?r3:%,

One way to approach spatial information
in image data is to recognize that the
ground cover associated with a given pixel,
i.e., its "class," is not independent of
the classes of its neighboring pixels.
Stated in terms of a statistical classifica-
tion framework, we may have a better chance
of correctly classifying a given pixel if
we take account of not only the spectral
measurements associated with the pixel
itself but of the measurements and/or
classifications of its "neighbors" as well.
Notice that at some point we must make
clear how "neighborhood" is to be defined.

If the objects in the scene tend to be
rather large relative to the resolution of
the sensor, i.e., each object is likely to
consist of many spectrally similar pixels,
this fact can be exploited nicely by apply-
ing a combination of scene segmentation
techniques and sample classification (some-
times called "per-field" classification)?.
More generally, the image can be considered
a two-dimensional random process and the
characteristics of this process incorpora-
ted into the classification strategy. This
is the objective of the approach described
here, in which a form of compound decision
theory is employed to improve scene classi-
fication through use of a statistical
characterization of context. Our work is
an extension of an idea by Welch et. al.’®

As increasingly complex forms of data
and data analysis methods are employed,
the computational requirements tend to
become more demanding. Although improve-
ment in the raw speed of digital computer
components can be exploited to some extent
to meet these requirements, it is clear
that evolving computer architectures,
especially those involving multiple proc-
essing elements, have much to offer. The

1979 Machine Processing of Remotely Sensed Data Symposium

CH1430-8/79/0000-0343%00.75 © 1979 IEEE

343

context classifier described here has com-
putational requirements which are severe and
become more so as the size of the contextual
neighborhood is expanded. It is a natural
candidate, therefore, for multiprocessor
implementation.

II. THE CONTEXT CLASSIFIER

The image data to be classified is
assumed to be a two-dimensional Nj x Ny
array of multivariate pixels. Associated
with the pixel at "row i" and "column j" is
the multivariate measurement vector X4 € R
and the true state or class of the pixél eij
e @ = {wy, ..., wpl. The measurements have
class-conditional densities p(X|wj), i = 1,
2, ..., m, and are assumed to be class-
conditionally independent. The objective
is to classify the N = N; x N, observations
in the array.

The action (classification) determined
by the classifier for pixel (i, j) is
denoted by aj;s € Q2. To pursue a Bayesian
(minimum risk? strategy , let the loss
incurred by taking action aj4 when the true
class is 034 be denoted by L%eij, ajy) for
some fixed hon-negative function L{-, *).
The average loss incurred over the N classi-
fications in the array is defined to be

1

5 .1 L(8y4r aj4)- (1)
1,]

In the most general case, the action aj

may depend on all of the observations 1n

the array. Let X denote this "vector of

vectors"; then the expected loss is
I OL(8.., a,.(X))
1,3 ij ij

Z

R(X) = E

(2)

I
2

i;j BLL(8; 4, ag5(x))]

and we would like to have a decision rule
(the rule of choosing ajj based on X)

which minimizes R(X). Note that the expec-
tation is with respect to 8j4.

When context is ignored, the action
(classification) depends only on the
measurement vector Xij of the pixel to be
classified, in which case aij(§) = aij(Xi-).
For our present purposes, however, we wan
to incorporate some neighborhood information
in the decision process, so we define a
neighborhood, the "context," consisting of
an arrangement of p pixels such as shown in
Figure 1. The arrangement actually used
will be based on physical and other practi-
cal considerations related to the environ=-

ment and application. Let Xj4 be a p-vector
of measurement vectors associated with

pixel (i, j) to be classified and let gij

be the corresponding p-vector of actual
classes. The function ajj(Xj§) maps
p-vectors of observations into single
classes (i.e., classifies pixel (i, j)

based on Xj3). The expected loss over the
full array 1is

R(X) =5 1 BIL(0;4, a;5(X;40)] (3)
i3

Furthermore, if L(+, +) is taken to be the
0-1 loss function (no loss for a correct
classification, unit loss for an error) and
the measurements in a neighborhood are
assumed to be class-conditionally independ-
ent, it can be shown that Eg. (3) will be
minimized if every pixel is classified
(action a is selected) so as to maximize

1

P P
Ef(xilei) G(Qij) (4)

1

)
e o,

= a

85

8. .
1]

where 64 and X; are the class and measure-
ment of the itﬁ pixel in the p-array (in
any convenient order), f(x|8) is the class-
conditional density of X, and GP(8i4) =
GP(61, 63, ..., 8y), which ideally must be
known for the type of scene to be classi-
fied, but in practice must usually be
estimated from an accurately classified
sample of the scene or from an analogous
scene of known classification.

An experiment was formulated to
investigate the extent to which this
classifier model can utilize contextual
information in satellite-gathered remote
sensing data. In order to avoid confounding
other effects with the impact of context,
it was decided to use a simulated data set
generated as follows. A classification of
multispectral remote sensing data was
selected which had been judged to be very
accurate (typically, produced by careful
analysis and refinement of multitemporal
data). Such a classification could be
expected to embody the contextual content
of an actual ground scene. Based on the
classification map and using the associated
statistics of the classes (developed in
producing the classification) data vectors
were produced by a Gaussian random number
generator and composed into a new data set.
Thus the new data set had the following
characteristics:

1. Each pixel in the simulated
data set represented the
same class as in the "template"

"1979 Machine Processing of Remotely Sensed Data Symposium

344

classification. The template
could be considered the "ground
truth" for the new data set.

2. All classes in the data set
were known and represented.

3. All classes had multivariate
Gaussian distributions with
statistics typical of those
found in real data.

4. All pixels were class-condi-
tionally independent of
adjacent pixels.

5. There were no mixture pixels.

Although the simulated data is somewhat
of an idealization of "real" remote sensing,
its spatial organization is consistent with
a real world scene and its overall character-
istics are consistent with the context model
set out above. 1In essence, then, what the
experimental results based on the simulated
data show is the effectiveness of the con-
text classifier given that the underlying
assumptions are reasonable. Further experi-
ments are required to generalize the conclu-
sions of these results to real data.

Three data sets were selected to repre-
sent a variety of ground cover types and
textures. Data set 1 is agricultural
(Williston, North Dakota), with ground
resolution and spectral bands approximating
those of the projected Landsat D Thematic
Mapper. Data set 2a is Landsat 1 data from
an urban area (Grand Rapids, Michigan).

Data set 2b is from the same Landsat frame
as 2a, but from a locale having signifi-
cantly different spatial organization.
data set is square, 50 pixels on a side.

Each

Figure 2 shows the achieved classifi-
cation results. The "no context" classifi-
cation accuracy is plotted coincident with
the vertical axis of each graph. Data set
1 was classified using successively 2, 4, 6
and 8 neighboring pixels; data sets 2a and
2b were classified using 2, 4, and 8
neighboring pixels. The results speak for
themselves. The accuracy improvement
resulting from the use of contextual infor-
mation is quite significant.

For this experiment, the context dis-
tribution Gp(gi-) was simply tabulated from
the "template™ classification. But in a
real data situation, such a template is not
available (else there would be no need to
pPerform any further classification). One
can envision a number of ways in which the
pP-vector distribution might be estimated for
a4 remote sensing application. For example,
1t could be extracted from a classification
of the same area obtained previously. This

would require that the area not have
changed too greatly in .its class make-up
since the earlier data were collected and
that the earlier classification was reason-
ably accurate. Or, the distribution might
be obtained from a classification of any
similarly constituted area. Still another
possibility would be to estimate the
p-vector distribution for the context clas-
sification from a "conventional" classifica-
tion with "reasonably good" accuracy. All
of these methods produce an estimate of the
p-vector distribution, and a crucial ques-
tion on which hinges the utility of this
approach is how sensitive the contextual
algorithm is likely to be to the "goodness"
of the estimate. This question is the
subject of ongoing research.

An experiment was formulated to obtain
some evidence concerning the feasibility of
applying the context classifier to a real
data situation. The data set used covered
a somewhat larger area of Grand Rapids,
Michigan, containing both data sets 2a and
2b. Data from small areas of known ground
cover were used to estimate the training
class statistics, and data from a disjoint
set of areas of known ground cover were
used as "test samples" to evaluate the
classifier accuracy (unfortunately, the set
used for this test was rather small,
consisting of only 136 pixels distributed
among 4 urban classes).

A non-contextual classification was
performed and found, based on the test set,
to be 81.6 percent accurate. The p-vector
distributions were estimated from this
classification and used to perform contex-
tual classifications using four and eight
nearest neighbors. The four-neighbor
classification was 83.1 percent accurate:
the eight-neighbor classification was 84.6
percent accurate. For this case, then,
some improvement in classification accuracy
was achieved by incorporating context in
the decision process, although the improve-
ment was not as dramatic as for the simu-
lated data sets. Whether this is due to
poor estimation of the p-vector distribu-
tions or simply to less contextual informa-
tion in the overall data set will be
established by further investigation.

ITI. MULTIPROCESSOR IMPLEMENTATION
OF CLASSIFICATION ALGORITHMS

Classification algorithms such as the
context classifier (and even much simpler
algorithms used for remote sensing data
analysis) typically require large amounts
of memory and computation. These are said
to be processor bound. Since many avail-
able systems, such as the IBM 360/370 VM or
the PDP 11/70 UNIX, are used on a time-

1979 Machine Processing of Remotely Sensed Data Symposium

345

sharing basis, a large processor-bound
program forces the operating system to
operate with less overall memory, forcing
the memory management to swap large amounts
of information in and out of main memory.
This reduces the efficiency of processing,
forcing the processor to take longer on all
jobs involved. For example, when UNIX is
under heavy loads (typically three to five
processor-bound jobs with 35 to 40 on-line
users), the CPU spends up to 60% of its
time on operating system tasks such as
memory management. One way to speed up the
processes would be to add a dedicated
special-purpose processor. Through the use
of parallel processors, the system through-
put could be increased even more. Various
dedicated systems have been proposed, such
as pipelined processors®, multimicrocomputer
systems’+®, and special purpose systems®.

To demonstrate the use of a such a
system on a task less complex than the
contextual classifier, consider the analysis
of Landsat data using a Bayes maximum likeli-
hood classifier (MLC). Landsat measurements
are taken from four spectral bands and
received as a data vector. Based on deci-
sion theory akin to that developed in the
previous section the vector is classified by
determining the probability that it belongs
to each information class and assigning it
to the class for which this probability is
maximum. In this case, one approach would
be to have one processor compute the prob-
ahility for each of the classes. Such a
method of processing would yield a substan-
tial increase in throughput over a dedicated
single~processor system.

Consider, for example, the Control Data
Corporation (CDC) multiprocessing system
consisting of an array of dynamically micro-
programmable processors called Flexible
Processors (FPs)®:1'%,1! fThe cDC FP cur-
rently has no hardware facilities for
floating-point operations, a disadvantage of
the system. But the parallelism of the
system more than outweighs this fault.
basic clock cycle time is 125 nsec, but
since the FP is designed to be connected to
as many as 15 other FPs in a parallel and/or
pipelined fashion, the effective throughput
can be drastically increased, resulting in a
potential effective cycle time of less than
10 nsec. The CDC FP has been considered for
its use in a large-scale image processing
system!'?, Its use in implementing a Bayes
maximum likelihood classifier is demon-
strated below. The techniques described are
to be extended to the contextual classifica-
tion algorithm.

The

A configurational diagram of the FP is
shown in Figure 3. (This is a preliminary
FP design, but the final version should be
very similar.) One of the features of the

FP is the double-bus architecture which
allows the user to manipulate data in 16-bit
units. Use of 16-bit integer formats
doubles the effective storage capacity of
the machine, but 32-bit lengths also are
easily handled, which makes it possible to
work with the IBM 360/370 floating-point
numbers as well as the PDP 11/70 formats.
Further, it is possible to implement
floating-point operations in software, so
the machine is capable of doing floating-
point arithmetic as is required by the clas-
sification algorithms.

In each FP there are two register files,
one called the temporary register file and
the other the large register file. Both are
divided into 16-bit subunits. If the needed
path width is 16 bits, the two files can
act like four files, thus creating more
addressable user space. A special feature

of the temporary file is its separate read
and write address registers, which can save
much CPU time in many types of matrix
operations. It is possible to do either a
read or a write to either file and simulta-
neously increment (or decrement) the address,
further increasing throughput. The tempo-
rary file is 16 words by 32 bits wide, while
the large file is 4096 words by 32 bits wide.
All of the register files consist of 60 nsec
random access memory (RAM).

There are three general purpose regis-
ters (GPRs) called the E, F and G registers.
All of these registers are connected to the
arithmetic logic unit (ALU). The E and G
registers are readable only through the ALU.
It is possible to shift the GPRs separately
as well as combining the E and F registers
to do a double-length shift. The output of
the ALU is treated as a register which is
accessible in eight-bit units. Separate
from the ALU is a hardware integer multi-
plier, which takes two eight-bit numbers and
multiplies them to produce a 16-bit product.
The input registers are the P and Q regis-
ters, which are each 16 bits wide. The
user can choose which of the two groups of
eight bits are to be multiplied.

The FP is equipped with four index
registers and four corresponding index- -
compare registers. There are four general
compare registers called maintenance compare
registers. All of the above are used for
looping and can be incremented or decremen-
ted during any statement not acceéssing
those registers.

The FP is equipped with a jump stack,
so it is capable of handling standard types
of program calls such as subroutine jumps.
This stack is only 10 bits wide, and is,
consequently, not suitable for storing
data.

1979 Machine Processing of Remotely Sensed Data Symposium

346

Input/output (I/0) for the FP depends
on the overall system (i.e., the FP array
and its host machine). Direct I/0 among
FPs and/or the host is done via the AIO,
AIl, ARO and ARl registers. There are
interlinked memory units on the FP system
which are accessed via the Zj, and Z,,¢
registers. Interrupts are handled through
the Intr (Interrupt) registers, so I/0 is
fairly easy and very fast (about 32 mega-
bytes per second).

The busses are connected to a register
pair called the BRG pair. These are linked
to the panel lights on the machine and can
be used for breakpointing or as a GPR
during execution.

Figure 4 shows now the FPs are linked
to the host and to each other. The shift
network is one means of inter-FP communi-

cation, the other being through interlinked
memories. Each FP can address certain
memory banks, which can be accessed by
certain other FPs. The shared memory (160
nsec cycle time) is especially useful when
it is necessary to transfer large amounts
of data between FPs.

Figure 5 shows a coding form for the FP
which shows, for example, that it is possible
to conditionally increment an index register,
§o a program jump, multiply two eight-bit
integers, and do a logical operation on the
E and G registers, all simultaneously. This
type of operational overlap in conjunction
with the use of many processors executing
concurrently greatly increases the effective
speed of the FP array.

The ability to do a fast matrix multi-
ple is at the heart of efficiently implemen-
ting the Bayes maximum likelihood classifier.
The form for the matrix multiplications is!:

gt (o1 _
(x-U;) (Ci) (x Ui),
where X is the data vector, U; is the mean
vector for the ith class, and C; is the
covariance matrix for the ith class.

Consider the use of the FP array to
pPerform these classifications. Assume
there are m distinct classes and the computer
System contains p FPs. Each FP is assigned
to process m/p classes. The large file in
€ach PP is initialized with the inverse of
the covariance matrices and mean vectors for
each class it was assigned. The current
data vector is stored in each FP in the
temporary file. When a new data vector is
loaded into an FP it overwrites the previous
One. For simplicity, but without loss of
generality, in the following assume that
Tt = P. If mis greater than p, then in each
FP instead of applying just one inverse

covariance matrix to the data set several
would be applied. This will, of course,
increase the execution time by a factor of
approximately m/p.

In standard arithmetic, one would first
multiply (X—Ui)t and C{l, creating a new
vector. This vector would then be multi-
plied by (X-Uj) resulting in a scalar. In
our implementation, the order has been
somewhat altered. (X-Uj)t is multiplied by
a column of C{l, accumulating the results
in a variable called "sum." After this is
done for column j of C7l, "sum" is multi-
plied by (X-Uj)4 (the jth element of (X-Ui)),
accumulating thé result in a variable
called "hold" and re-initializing "sum" to

0%:13, The following is a "pidgeon ALGOL"
description of the process for one pixel:
total=0
for j=1 to n do
begin;
sum=0;

for k=1 to n do 1
sum=sum+D[k]*Ci [k,3];
hold=hold+sum*D[j];

end;
n = dimension of covariance
matrix
D[k] = kth element of (X-Uj),
-1 computed when X is loaded
¢ "[x,j] = element in the kth row and

jth column of Cj

At the end of the routine, the value con-
tained in the "hold" variable is the desired
scalar. This algorithm requires fewer
stores and fetches than the standard algo-
rithm, so it shortens the run time of the
process. All pointers are kept in the
index register, further simplifying the
process. Finally, because only two
accumulators are used, the three GPRs can
be kept free for the floating-point opera-
tions, while the accumulators are stored
elsewhere.

One way to perform this algorithm is
to have the host initially send Ci+ and U;
to FP i. The host then sends the current
data vector X to FP 0, then to FP 1, FP 2,
etc. As soon as the FP receives the data
vector, it begins the calculation of the
value of the discriminant function. After
the host gives all FPs the data for pixel
(i, j), it waits until FP 0 has calculated
the value for its discriminant function.
The host then retrieves the value of the
discriminant function and loads FP 0 with
the data vector for the next pixel. The
host executes this process for all the FPs.
When the last FP has transmitted the result,
the host does a compare and stores the class
index corresponding to the maximum of the
discriminant values computed for this pixel.
Thus, the compares are done by the host

1979 Machine Processing of Remotely Sensed Data Symposium

347

while the FPs are computing the discriminant
functions for the next pixel, minimizing
delay.

Allowing 40 FP machine cycles for each
floating point addition and 9 FP machine
cycles for each floating point multiply'?,
the number of machine cycles is as follows;

where j = number of pixels and

n = number of measurements

(size of data vector):
setup and clear registers: 9
load mean: 2n
load covariance matrix: 4n?
load and normalize data vector: 42jn+2
inner loop of algorithm: 56jn
outer loop of algorithm: __613n

563n2 + 103jn + 4n2 + 2n + j + 9.

the number of classes,
Ifm

This assumes that m,
equals p, the number of processors.

is greater than p, the runtime may be
approximated by multiplying by [m/p].

Exact comparisons of the FP array with
other systems are difficult without detailed
information about factors such as pre-or
post=processing done by the host machine
and the data precision used. However, to
give a general idea of the effectiveness
of this approach, consider a 256 x 256
classification of Landsat data (n=4) using
16 classes and a complete array of 16 FPs.
The total processing time is approximately
10.7 sec. ESL!"* states that their array
processor gives up to an increase of 25
times over the IBM 370/158. On the classi-
fication of four channels into eight
classes, their time is 6.3 sec.

Due to the organization of the FP
and the fact the user can microprogram it,
accurate mathematical analyses of FP
algorithms are complex. In order to study
these timing questions, a simulator for a
single FP was developed!®. It has now been
expanded to handle multiple FPs. The
maximum likelihood classifier is currently
being implemented on the simulator to
confirm the analytical timing results and
to provide a working classifier program
written in FP assembly language which
could be run on the actual FP hardware.
This will allow an accurate cost-effective-
ness study.

IV. CONCLUSIONS

The preliminary results from the use
of context in classification are promising.
By studying ways of estimating the p-vector,
choosing the size and shape of neighborhood,

etc., it may be possible to develop a
highly accurate classifier for context-
rich scenes.

The discussion of performing of the
maximum likelihood classifier demonstrates
one way in which a multiple processor
system can be used to speed up the
processing of image data. The implementa-
tion of the classifier on the simulator
and eventually on the actual FP system
will provide hard data to verify the
effectiveness of this approach.

Through the use of parallel, pipelined,
and/or special purpose computer systems,
such as the CDC Flexible Processor system,
the types of computations required for the
context classifier and other computation-

ally demanding processes can be implemented
efficiently. This will not only reduce

the computation time regquired to do contex-
tual classification but will as well allow
the investigation of techniques which may
otherwise be considered infeasible.

V. REFERENCES
1. P. H. Swain and S. M. Davis, eds.,

Remote Sensing: The Quantitative
Approach, McGraw-Hill, New York, 1978.

2. R. M. Haralick, K. Shanmugam, and I.
Dinstein, "Textural Features for Image
Classification," IEEE Trans. Systems,
Man, and Cybernetics, Vol. SMC-3,
pp. 610-621, November 1973.

3. R. L. Kettig and -D. A. Landgrebe,
"Classification of Multispectral Image
Data by Extraction and Classification
of Homogeneous Objects," IEEE Trans.
Geoscience Electronics, Vol. GE-14,
pp. 19-26, January 1976.

4., J. S. Weszka, C. R. Dyer, and
A. Rosenfeld, "A Comparative Study of
Texture Measures and Terrain Classifica-
tion," IEEE Trans. Systems, Man, and

Cybernetics, Vol. SMC-6, pp. 259-285,
April 1976.

5. J. R. Welch and K. G. Salter, "A Context
Algorithm for Pattern Recognition and
Image Interpretation,” IEEE Trans.
Systems, Man, and Cybernetics, Vol. SMC-1,
pp. 24-30, January 1971.

6. G. R. Allen, L. O. Bonrud, J. J. Cosgrove,

and R. M. Stone, "The Design and Use of
Special Purpose Processors for the
Machine Processing of Remotely Sensed
Data," Conference on Machine Processing
of Remotely Sensed Data, IEEE Cat. No.
73CH0834-2GE, pp. 1A-25 to 1A-42,
October 1973.

1979 Machine Processing of Remotely Sensed Data Symposium

348

10.

11.

H. J. Siegel, "Preliminary Design of a
Versatile Parallel Image Processing
System,”" Third Biennial Conference on
Computing in Indiana, pp. 11-25, Indiana

book," Digital System Division,
Control Data Corp., Minneapolis,
Minnesota, November 1977.

Univ., Bloomington, IN, April 1978. 12. J. L. Kast, P. H. Swain, and T. L.

i Phillips, "The Feasibility of Using
H. J. Siegel, P. T. Mueller, Jr., and a Cyber-Ikon System as the Nucleus of
H. E. Smalley, Jr., "Control of a an Experimental Agricultural Data
Partitionable Multimicroprocessor Center," LARS Contract Report 021678,
System," 1978 InterPational Conference Laboratory for Applications of Remote
on Parallel Processing, IEEE Cat. No. Sensing, Purdue University, West
78CH1321-9C, pp. 9-17, August 1978. Lafayette, Indiana, February 1978.
K. S. Fu, "Special Computer Architectures 13. K. W. Krause, "Use of the CDC Cyber-
for Pattern Recognition and Image Ikon System for a Bayes Maximum
Processing-An Overview," 1978 National Likelihood Classifier," unpublished
Computer Conference, pp. 1003-1013, report, May 1978.
June 1978. .
Control Data Corp., "Cyber-Ikon Image 14. ESL, Incorporated, "Advanced Scienti-
Processing System Design Concepts,” fic Array Processor,” descriptive
Digital Systems Division, Control manual, ESL, Java Drive, Sunnyvale,
Data Corp., Minneapolis, Minnesota, California.
January 1977.

15. K. W. Krause, "Use of the CDC Cyber-
Control Data Corp., "Cyber-Ikon Ikon Simulator," unpublished report,
Flexible Processor Programming Text- August 1978.
1-1,]3
i-1,j
i,j-1 i,j i,j+l
i:j-l i»j
i+1,]3

a p=3 choice

Figure 1.

a p=5 choice

A p-pixel neighborhood.

1979 Machine Processing of Remotely Sensed Data Symposium

349

g 975}

5 os0f

®”

< @25 :

g 900 Simulated agricultural data

/ g 875 Thematic Mapper resolution

g 850

’

g 82,5

B ‘(\ I) n
80.05 2 4 6 8
- -Nearest Neighbors
(a)
_ 940} = 930
g 86.5, £ 8os
a% 83.0f + 86.0]
% 775} g 825
0 . : ‘ .
§ 72.0} Simulated urban data £ 790 Simulated urban data
5 Landsat-1 resolution L Landsat~1 resolution
S 66.5 S 75.5|
$ (a) ‘ a '(b)
S 610 = 720
5 &
g 555 3 68.5
500 65.0 P
0 2 4 8 0 2 4
Nearest Neighbors Nearest Neighbors
(b) (c)
Figure 2. Results for simulated data: (a) data set 1, (b) data set 2a,
(c) data set 2b.

1979 Machine Processing of Remotely Sensed Data Symposium
350

s gy

Figure 3.

INPUT
FILE
321 16 worps
x
32 BITS

1

SMALL
FILE
16 WORDS
X
32 BITS

CHANNELS
[R e Nl Pt

PARTY
LINE

LARGE
FILE
2048 WORDS
X
32 BITS

ARITH-
METIC
LoGIC
UNIT
32 LTS

HIGH
SPEED
BUFFERED
CHANNEL

32

PRIORITY
INTERRUPT
NETWORK

CONDITIONAL
INSTRUCTION
NETWORK

MICROMEMORY CON-
TROL NETWORK
4096 WORDS X

48 BITS

MULTI-
PLIER
16 BIT
RESULTS

1979 Machine Processing of Remotely Sensed Data Symposium

Data path organization in the CDC Flexible Processor’’.

351

TO I/0

BUFFER
MEMORY
TO
0
SYSTEMS r T r ;‘Is:mss
CONTROLLER I W STATION
Y 6 * g * ; & ; * ‘ ¥ ; CONTROL
- CONSOLE
FP FP FP FP FP FP
2 2 2 RING
TO ALL
._l BANKS OF
ﬂ DISPLAY
t - P, 1 MEMORY
LOCAL 4 ’ &
DATA COMMON
PATH BULK BULK BULK DATA
MEMORY MEMORY MEMORY PATH

CONTROL DATA

FPigure 4.

FP array block diagram!?,

emreneme CONTROL PATH

wwmmmsmm DATA PATH

wmssmes FP TO FP COMMUNICATION

¢

CONTROL FIELDS BUS 0 BUS 1

SH COMMENTS oEINC | [qFINC | ocinc P COMMENTS

10 COMMENTS saco [V//////A skcl 10 | oo fofon2 [and |
YR LS 77777] S| comeEnTs 7/, osro Y/////; DST1 COMMENTS
wycL | Im| [ow | [mx wuLr | | Aop COMMENTS SRCO DSTO SRC1 DST1 COMMENTS
o LebsJaloalolnla]ufulujodutolalnlmininlntdnlnlpw nlalwlp]onlonlo]m[nlolnimiole afalolaluloleadeolelolnlolnfulwlolaialeleloluleloluelelelnlnlin]n] nmlﬁ]-ruln n]wl
.41 - - Aod A 41§ Lt £ Lo 4 4 A4t 2.2 2 2 i} 4‘11' P J 4t 1 e i i _4 - - ke i
i i 44 L Lt -y 1 P TR T S S T W 1 I P 'S oAb i . | A Al dod

352

Figure 5.

Flexible Processor coding form!?!.

1979 Machine Processing of Remotely Sensed Data Symposium

Approach (McGraw-Hill, 1978).
=

Philip H. Swain is assistant professor
of electrical engineering, Purdue
University, and program leader for
Data Processing and Analysis Research
at the University's Laboratory for
Applications of Remote Sensing (LARS);
B.5.E.E., Lehigh University; M.S.E.E.
and Ph.D., Purdue University. Prof.
Swain has been affiliated with LARS
since 1966 and has contributed exten-
sively to the development of data
processing methods for the management
and analysis of remote sensing data.
His areas of specialization include
theoretical and applied pattern recog-
nition and methods of artificial
intelligence. He is co-editor and
contributing author for the textbook
Remote Sensing: The Quantitative

I(

Bradley W. Smith received the B.S.
degree in December 1978 from the
Electrical Engineering School at
Purdue University. He is currently
pursuing the M.S.E.E. degree at Purdue
and is on the research staff at LARS.
He is a member of the engineering
honorary Tau Beta Pi and the science
honorary Phi Kappa Phi.

Howard Jay Siegel is an assistant

professor in the School of Electrical

Engineering at Purdue University and

on the research staff of Purdue's Lab-

oratory for Applications of Remote
Sensing (LARS). His research inter-
ests include parallel processing,
multimicroprocessor systems, speech
processing, natural language proces-
sing, and image processing. Dr.
Siegel received both the S.B. degree

in EE and S.B. degree in Management in

1972 from MIT. He received the M.A.

and M.S.E. degrees in 1974, and Ph.D.

degree in 1977, all from the Depart-
ment of Electrical Engineering and

Computer Science at Princeton Univer-

sity. He is a member of the Eta
Kappa Nu and Sigma Xi honorary
societies.

1979 Machine Processing of Remotely Sensed Data Symposium

353

