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COMPUTER RECOGNITION OF CITRUS
INFESTATIONS

D.H. WILLIAMS
The University of Texas at El Paso

J: K AGGARWAL
The University of Texas at Austin

ABSTRACT

A computer software system is described that
uses digitized color information from aerial
color infrared transparencies to detect the
presence of citrus mealybug (Pseudococcus citri
Risso), brown soft scale (Coccus hesperidum L.),

and Rio Grande gummosis in individual citrus trees.

The color coordinates at each spatial point, and
color differences at adjacent points are used to
locate the trees and to detect the infestations;
and compensation is made for the variation in
color characteristics between different trans-
parencies. The system requires the input of four
parameters: a flag denoting the presence of heavy
shadows in the image, nominal tree size and spac~-
ing of the citrus trees, and a flag denoting the

season of the year when the transparency was taken.

An index of recognition, Iq, was defined and used
as a measure of recognition effectiveness. For
unknown data, Iq ranged from 43% to 81%, with
nominal values of 60% to 80% for all three in-
festations.

I. INTRODUCTION

Each year in the United States, citrus mealy-
bug, brown soft scale and Rio Grande gummosis
cause serious economic losses to citrus growers in
the form of damaged trees, lower yields, and de-
preciated fruit. Presently, this damage is
assessed by formal or informal ground surveys, or
by human interpretation of aerial color infrarﬁd7
(CIR) transparencies. Previous investigations~~
have found that many citrus infestations exhibit
identifiable features in low altitude CIR images.
Unfortunately, some of the infestations are not
readily distinguishable from each other, however.
Other work®:9 has determined that machine recog-
nition of citrus infestations is feasible, using
an interactive processing system with an operator
assisting in the decision-making process. The
present study extends this work with the develop-
ment of a software system that operates in a
batch environment, recognizing the infestations

The research was supported in part by the National
Science Foundation under grant ENG74-04-986.

using only four parameters as input. Brown soft
scale, citrus mealybug, and Rio Grande gummosis
were chosen for this processing since they tend
to exhibit unique characteristics on CIR film,
and because they cause damage in all of the
growing areas of the United Stat 8' (Rio Grande
gummosis is known by other names™ in growing
areas outside of Texas.)

In co}og infrared transparencies, the in-~
festations™ 2’1l are characterized primarily by
changes in the l'ght reflected from the leaves.
Healthy tree foliage exhibits a bright red ap-
pearance due to strong reflectance of near in-
frared wavelengths. In comtrast brown soft
scale and citrus mealybug excrete a honeydew so-
lution which provides an excellent growth site
for the sooty mold fungus Capnodium citri Berk.
and Desm. The presence of the mold is sensed by
the film, since the reflectance from the foliage
is greatly reduced in both the visible and near
infrared spectral regions, giving a dark red or
black appearance. The two infestations can be
distinguished by the distribution of the mold:
brown soft scale is characterized by a heavy
coating of mold that appears black or dark red
while mealybug causes an uneven coating that ex-
hibits a mottled black and red appearance.

Gummosis is a disease that is caused by un-
known agents that attack the main branches or
upper trunk of the tree. Nutritional de-
ficlencies cause leaves in the affected area to
turn chlorotic (yellow-green) in color, in-
creasing the reflectance in the visible light
region. This increase is manifested in CIR film
as a white or pink color.

The input data for the system consists of
color_ transparancies that are digitized using a
colorl flying gpgs scanner, and transformed in-
to a normalized™’ color coordinate system. At
each spatial point, the normalized coordinate
values are:

I = (R+G+B)/3 (65
X = 255.R/(R+G+B) (2)
Y = 255°G/(R+G+B) (3

where

R, G and B are the red, green, and blue
color intensities output by the scanner.

I is the intensity (brightness) coordinate

value.
0<1<255

X and Y are the red and green chromaticity
coordinates respectively; 0<X<255 and
0<Y¥<255, where X and Y are set to zero if
I=0.

The response for each spatial point is de-
scribed by a three dimensional space, with two
coordinates representing chromaticity, and the
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third intensity.
II. DATA CHARACTERISTICS

In order to determine the general character-
istics of the data, selected areas of the eight
training slides identified in Table 1. were
scanned to obtain their distributions in the
(X,Y,I) space. The mean values of these dis-
tributions, normalized to a range of 0 to 1, are
shown in Figure 1. Analysisl4 of this informa-
tion determined that three classes of data could
be defined and modeled in the (X,Y) plane as
shown in Figure 2, since for each of the three in-
festations, coordinate values of the infested
foliage clustered between those from background
features, and from healthy tree foliage. Further-
more, since the slope of the class axis varied by
only a small amount between different slides, a
new chromaticity coordinate, W, was defined as a
linear combination of X and ¥:

W = 301X - 203Y + 54 (4)

This transformation simultaneously reduces the
dimensionality of the data while maximizing the
between class separation of the three classes.
The effect of this transformation is shown in
Figure 3, where the mean values from Figure 1 are
replotted in the (W,I) domain.

SLIDE IDENTIFICATION

NUMBER
1 G-5 G = gummosis
2 G-1
3 BSS-5 BSS = brown soft

scale

4 BSS-6
5 BSS-12
6 MB-4 MB = mealybug
7 MB-~7
8 MB-2

Table 1 Training Slide Identification

Further processing determined that the
training slides exhibited large variations in
chromaticity and intensity characteristics in
the (W,I) space due to differences in film expo-
sure, ambient light conditions, and scanner gain
levels during processing. However, by normali-
zing the coordinate values with respect to the
maximum and minimum values of W and I, the coor-
dinates for healthy and infested tree foliage
clustered in four regions as shown in Figure 4.
(As will be described shortly, these regions are

used to determine the tree classification para-
meters.)

I1I. PROCESSING

The processing for detection and classifi-
cation of the three infestations uses both
spectral (color) and spatial information from the
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Figure 1 (b) Mean Values of the Train-
ing Slide Color Distribu-
tions in the I,Y Plane

image. Selective processing of the data is em-
ployed to reduce the amount of computation. The
processing consists of three parts: location of
individual citrus trees within rectangular
boundaries, preprocessing to compensate for the
variation in color characteristics between
different slides and to determine the parameters
needed for classification, and classification of
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the health of each tree,
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Tree location requires the input of two
parameters: the nominal tree size and tree
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Figure 3 Mean Values of the Training
Slide Color Distributions in
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spacing; and restrictions on the input images
that the citrus trees be planted in a regular
pattern, that the individual trees not be com-
pletely grown together, and that the transparen-
cles be taken at an altitude of 10,000 feet or
less. Only the W coordinate is used in this
step, since the background and tree foliage
coordinates are separated primarily along the W
axis as shown in Figure 3.

The image is scanned in vertical strips as
shown in Figure 5, using a directional derivative
15, 16 that is averaged across the width (one
nominal tree size and one nominal tree spacing)
of each strip to locate vertical edges:

K2
DIF = I (W(J,K) - W(J-1,K)) (s
K = K1

where

DIF is the averaged directional
derivative for row J of a given
strip

K1, K2 are the column bounds for that
strip

W(J,K) is the W coordinate value for
location (J,K)

As the directional derivative is calculated down
a strip, leading and trailing edges of treelike
objects exhibit positive and negative peaks. If
successive positive and negative peaks exceed
preset thresholds, the vertical separation is
calculated to determine whether it is within a
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Figure 5 Vertical Scan

size window of 7/10 to 10/7 of a nominal tree size.

If the size is acceptable, the edge coordinates
are stored as vertical tree boundaries; otherwise,
the scanning proceeds as before.

After all of the vertical strips have been
scanned, the image is next scanned horizontally
between the vertical boundaries, using the same
pProcess as previously. As before, if the thres-
holding and size criteria are satisfied, the left
and right edge coordinates are stored with the
top and bottom values.

Upon completion of the horizontal scan, ECN,
a measure of the difference in vertical and hori-
zontal size is calculated for each object in
which the boundaries have been stored in the
previous steps:

ECN = (TOP - BOT)/(RSIDE-LSIDE) (6)
where

TOP is the top boundary
BOT is the bottom boundary
RSIDE is the right boundary
LSIDE is the left boundary

If the following inequality is satisfied:
0.6<ECN<1.66 €))

the vertical and horizontal size of the object
are of the same order and the object is assumed
to be a tree; otherwise, the four boundaries of
the object are erased.

A citrus grove infested with mealybug is
shown in Figure 6, and a plot of the averaged
directional derivative for a vertical scan strip
of this image is shown in Figure 7. Each tree
row causes a positive peak at the top edge of a
tree row that falls off rapidly, forming a nega-
tive peak at the bottom edge. Consequently,
seven sets of positive and negative peaks are
exhibited, one for each row of trees. The
rectangular boundaries for the trees are shown
in Figure 8.

Figure 6 Slide MB-2

To preprocess the data, the spatial points
within the tree boundaries are scanned in two
passes. During the first pass, the maximum and
minimum values of the W and I coordinates are
determined. MAXT and MINT, and MAXI and MNIT are
the maximum and minimum values for W and I re-
spectively, as shown in Figure 4. To compensate
for the variation in color characteristics, the
coordinates at each spatial point can be normal-
ized, or the fixed boundaries in the normalized
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space can be calculated and then transformed

back into the (W,I) space. In order to save pro-
cessing, the second method is employed. A second
pass 1s then made through the data to calculate
the mean values of the data points whose coordi-
nates are within the four color search regioms.
Pixels with coordinates outside of the four re-
gions are not used in the calculations, since
they are assumed to represent nontree informatiom.
The means are transformed into the (W,I) space
and used as parameters in the decision functioms
which classify the trees in the next stage of
processing. The transformed values are denoted
by U(LK,C) LK = 1,2,3,4, and C = 1,2; where LK
represents the color: 1 = red, 2 = dark red, 3 =
white, and 4 = black; and C specifies the coordi-
nate: 1 = W and 2 = I.

TRUE YALUE = VALUE » 10%

VERTICAL POSITION

The values of the variance parameters,
V(LK,C), LK = 1,2,3,4, and C = 1,2; are then
calculated from the transformed widths of the
13 four color search regions except for the follow-
ing case. V(3,2) is calculated using the distance
between U(3,2), the transformed intensity mean,
and the transformed minimum intensity boundary
for the white region, in order to limit the white
response in the I direction. The variance pa-
rameter values are also used in the decision
functions which subsequently classify the trees.

93 1.08 1.24 1.40 }.BB 1.70 1.86 2.0 2.17 2.32 2.47 3.63 2.7 2.94 3.09

‘0.01 0.16€ 0.32 0.47 0.63 0.78 O

In the last stage of processing, the classi-
: fication of each bounded object is determined.
AVERADE DIFFERENCE The classification is performed on an object by
TAUE VALUE = VALUE o 10¢ object basis, processing only pixels that lie

Figure 7 Fourth Vertical Scan Strip within the rectangular boundaries. The values of

K =133 - 173 two flags are required, one denoting the season
of the year when the transparency was taken, the
other denoting the presence or absence of heavy
shadows.

L
F g &8 & % % &

£ = &l g 5

5.29
448 =
361
rmh
1.79

The processing for each bounded area is as
follows. First, TNUM, and the contents of
arrays CLR, TPT, and CF, are set to zero. (The
function of these variables will be described
shortly.) Next, §he state conditional probability
density functionl’/ is calculated for each of the
pixels within the boundary:

P (PXL(J,K) /LK)=DEN (LK) =

2
IIEXP(—((PXL(J,K,C)~U(LK,C))fV(LK,C))Z) (8)
c=1
LK=1,2,3,4
where

PXL(J,K) is a vector composed of the (W,I)
coordinate values at location (J,K).

EETTLEEET

LK denotes one of the four colors: red,
dark red, white or black.

ssEnnae

C denotes the coordinate.

PXL(J,K,C) is an element of PXL(J,K), and
Figure 8 MB-2 Tree Boundaries ) :
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specifies a value of W or I at location
(J,K). ’

U(LK,C) is the mean value for color class
LK, in coordinate C.

V(LK,C) is the variance for color class LK,
in coordinate C.

The form of DEN(LK) was chosen to be gaussian
since the flying spot scanner was found to have
a gaussian output when digitizing a slide con-~
taining a single color (i.e. a neutral denmsity
or Kodak wratten filter).

At each spatial location, the density
function with the maximum value is determined:

MAXCLS (J,K) = max(DEN(LK)). 9
LK

If MAXCLS(J,K) exceeds a threshold value of 0.1,
the pixel is classified as color LK, the foliage
color having the highest probability of causing
PXL(J,K). MAXCLS(J,K) is then added to CLR(IK);
and TPT(IK) and TNUM are incremented by one,
Array CLR keeps a running total of the density
values for each foliage color, TPT records the
number of points receiving each color classifica-
tion, and TNUM counts the total number of points
within the boundary.. If MAXCLS(J,K) does not
exceed the threshold, no classification is made
for that pixel, and no changes are made to CLR
(IK), or to TPT(TK). TNUM, however, is in-
cremented by one.

The threshold value was obtained by assuming

that the distance from the mean was equal to the
variance, and taking the resulting value, (0.362),
as the threshold. .

If pixels in two consecutive columns are
both classified as color_ LK, the corresponding
continuity function, CF(LK), is also incremented
by one. (The last pixel in a row is consecutive
with the first pixel in the next row.) CF keeps
a running count of the relative size of continu-
ous color areas that are contained within the
boundary.

After all of the pixels within a given tree
boundary have been processed, the color informa-
tion is averaged over all of the points within
the boundary:

TCLR(LK) = CLR(LK)/TNIM = P(PXL(J,K)/LK)P(LK)
LK = 1,2,3,4 (10)

where
P(PXL(J,K)/LK) = CLR(LK)/TPT(LK)
P(LK) = TPT(LK)/TNUM

Consequently, TCLR(LK) gives a relative measure
of the amount of the characteristic color, LK,
that is exhibited by the bounded object.

Before further processing is performed, the
following ratio is calculated to verify that the
bounded object exhibits treelike color charac-
teristics:

4 ‘
TS = I (TPT(LK))TNUM (11)
LK=1
TS gives a total measure of the four character-
istic foliage colors that are contained within
the boundary. If TS is legs than a threshold
value, D2, the object is classified as a nontree,
as shown in Table 2. This eliminates objects
(i.e. patches of Johnson grass) that are similar
in shape as the trees, but which exhibit differ-
ent spectral characteristics. A nontree classi-
fication causes the clagsification to be stored,
the following steps to be skipped, and pro-
cessing to continue with the next boundary.

CONDITION " DECISION
TS < D2 NONTREE
DEC(3) > D3 AND GUMMOSIS
DEC(3) > DECM‘D4 :

D5 < DECM < D6 AND MEALYBUG

DECM > DEC(3) *D7

DECM > D6 AND
DECM > DEC(3)-D7

OTHERWISE HEALTHY

BROWN SOFT SCALE

Table 2 Classification Decision Table

For the bounded'objects that exhibit tree-
like spectral characteristics, the following
decision functions are calculated:

DEC (LK) = TCLR(LK)/TCLR(1), LK = 2,3,4 12)

These functions are a modified form of the maxi-
mum likelihood ratio, and are formed from the
ratio of the infested foliage colors to red, the
healthy tree color.

A modified decision function, DECM, is calcu-
lated that combines the effect of the dark red
and black foliage colors, and employs the conti-
nuity functions to assist in the separation of
continuous dark color areas (browm soft scale),
and areas that are mottled (mealybug):

DECM = DEC(2) + DEC(4) + 0.1(CF(2) +
CF(4))/CF(1)

Since shadows affect the value of DECM, a
flag, SHAD, is set if the transparency contains
heavy shadows. This causes DECM to be reduced
by a factor of D1, so as to compensate for the
extra dark information. Otherwise, the value of
DECM is not affected, A second flag, SEAS, is
also employed in order to prevent new foliage
from being mistakenly identified as gummosis,
since both have similar spectral characteristics
during the spring and summer months. If SEAS is
set, a classification of gummosis is prevented

(13
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in the following steps. Otherwise, the trans-
parency was taken during the fall or winter months,
and the classification is not affected.

DEC(3) and DECM are used to classify bounded
(treelike) objects as shown in Table 2, using
threshold values D3-D7. The derivation of the
threshold levels is described in reference 14.

Each object exhibiting treelike spectral charac-
teristics is classified one of four ways: healthy,
or containing gummosis, brown soft scale, or cit-
rus mealybug. After each bounded object is classi-
fied, the result is stored, and after all of the
bounded areas have been processed, the results are
output in both tabular and pictorial (overprint)
form,

IV RESULTS AND CONCLUSIONS

In order to test the recognition process,
three of the training slides, MB-2, G-1, and BSS-
19, were used to set the classification threshold
levels, D2-D7, shown in Table 2. The system was
then used to analyze six slides of unknown data.
All of the slides contained only one type of
infestation. The results were tabulated using the
following index of recognition as a measure of
recognition effectiveness:

Iq = Nq x 100/ (Nq + Mq + Lq) (14)
where

Iq 4s the index of recognition for the qth
class of patterns, 0<Iq<100 percent.

Ng 1s the number of patterns in-class q that
are correctly clagsified.

Mq is the number of patterns in class q that
are misclassified into other classes.

Lq is the number of patterns in other
classes that are misclassified into
class q.

This index gives a measure of both com~
mission and ommission errors and is maximized if
patterns in class q are not missed, and if
patterns in other classes are not misclassified
into class q. Note that non q classes of patterns
are not individually specified in this expression.

The classification results for three typical
slides are shown in Figures 9-11 in overprint
form, and the results for all of the slides are
tabulated in Tables 3-5. The classification key
for the overprint output is shown in Table 6.

Tables 3-5 are tabulated by individual in-
festation, and also as infested/noninfested. 1In
the latter case, no differentiation is made be-
tween the individual infestations in the infested
catagory. Iq is calculated for the different
classes shown in each table, using the corre-
sponding values of Nq, Mq, and Lq. As an example,

for slide MB-2 in Table 3, MB denotes that class
q represents trees infested with mealybug. Forty
8ix trees containing mealybug were correctly
classified, 6 were misclassified into other
classes, and 3 healthy trees were misclassified
as infested with mealybug, giving an index of
recognition of 84%. .

CLASS 2‘1 Eﬂ 1&1 Ig *
MB-2
MB 46 6 3 84
HEALTHY 35 3 5 81
ALL 81 9 8 83
INFESTED 47 5 3 85
NONTNFESTED 35 3 5 8]
ALl 82 8 8 H4
MB-13
MB 47 1n 0 81
LDFALTHY [} 0 4 0
ALL 47 11 4 76
INFESTED 51 7 0 88
NONINFESTED 0 0 4 0
ALL 51 7 4 82
MB-20
MB 75 63 5 52
HEALTHY 83 20 17 69
ALL 158 83 22 60
INFESTED 120 18 S 84
NONINFESTED 83 20 17 69
ALL 203 38 22 7

Table 3 Index of Recognition of

Mealybug
N M L T (%
CLASS 'y q ' g()
&1
GUM 18 7 [} 72
HEALTRHY 50 1 4 91
ALL 68 8 4 85
INFESTED 18 7 L] 72
NONINFESTED 50 1 4 91
ALL 68 8 4 8
g2
GUM 13 5 0 72
HEALTHY 39 13 2 n
ALL 52 18 2 72
INFESTED 13 513 42
NONIRFESTED 39 13 2 72
ALL 52 18 15 61
G4
GUM 12 11 5 43
HEALTHY 18 21 10 37
ALL 30 2 15 39
INFESTED 13 10 21 30
NONINFESTED 18 20 10 38
ALL 30 3 31 33

Table 4 Index of Recognition of
Gummosis

Slide G-4 received the lowest recognition
rate. It contained very heavy shadows, and
several of the trees were surrounded with Johnson
grass, an indication that the grove was not well
taken care of. The shadow information caused
many of the healthy trees to be classified as in-
fested with mealybug, while many of the trees in-
fested with gummosis were clagsified as healthy,
since the ratio of white to dark information was
shifted to below the gummosis threshold. Also,
several of the trees surrounded with Johnson grass
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received the classification of gummosis, because
of the extra white information introduced by the

(The value for healthy trees was zero for MB-13
which contained no healthy trees, and for BSS-20

which contained only one healthy tree.) These
results used in conjunction with the previous
values, show that the system achieves nominal
recognition values of 60 to 80%Z for each of three

grass. For this slide, the index of recognition
for healthy trees was 37%, while the value for
infested trees was 43%.

& b7 . 1@ infestations.
CLASS i TR s ER s S bt
B8S-19 '
LEh 1% 2 o HH
NEALTHY 1 n 0 100
ALL 16 2 0o 89
TNFESTED 16 1 a 94
HONINFESTED 1 0 0 o0
ALL 17 1 0 %
Bss-18
BSs 1S 1
HEALTHY 7 0 2 78
ALL 21 15 3 54
INFESTED | 26 3 187
NONINFESTED 7 ] 2 78
ALL n 3 i 85
B55-20
BSS 52 15 5 72
HEALTHY 0 1 0 0
ALL 52 16 s n
INFESTED 52 13 5 72
NONINFESTED 0 1 0 0
ALL 52 16 5N

Table 5 Index of Recognition of
Brown Soft Scale

GRAPHICAL REPRESENTATION CLASSIFICATION

BLACK BORDER HEALTHY

GRAY RECTANGLE MEALYBUG

BLACK RECTANGLE BROWN SOFT SCALE
WHITE RECTANGLE GUMMOSIS

WHITE BORDER NONTREE

Table 6 Classification Key Figure 9 MB-20 Tree Classification

Another problem was the cross classification
of citrus mealybug with brown soft scale. Slide
BSS-18 contained infestations of brown scale
that ranged from very light to very heavy. Many
of the lightly infested trees had the appearance
of being infested with citrus mealybug, and were fication process, but heavy shadows caused a
misclassified into that category. In contrast, significant increase in the classification error
slide MB-20 contained infestations of mealybug rate. Moderate infestations of mealybug were
with very heavy concentrations of sooty mold, separated from moderate to heavy infestations

and many of the infested trees were misclassi- of brown soft scale, however, heavy infestations
fied as containing brown soft scale. When the of mealybug, and light infestations of brown
results were reclassified using the infested/ soft scale were not effectively separated by
noninfested classes, the index of recognition the system. The spectral information is the
changed from 47 to 87%, and from 52 to 84%, primary feature that is used to recognize the in-

respectively, for the two slides. festations. Although three times as much data
must be initially processed in comparison to
black and white values, typically, less than 1.5
times as much data is required for the majority
of processing.

In conclusion, the system detects the
presence of citrus mealybug, brown soft scale,
and Rio Grande gummosis in individual citrus
trees using only four parameters as input. Moder-
ate shadows had no undue effect upon the classi-

Unknown slides MB-13, G-2, and BSS-20 re-
turned values of Iq for the three infestation
classes that were higher than in the previous
examples. The images contained only light to
moderate shadows, and were taken of citrus
groves that were well maintained; slides BS55-20
and MB-13 contained infestations of brown soft
scale and citrus mealybug that exhibited dis-
tinctive visual characteristics, The index

of recognition values for these slides ranged
from 72 to 81% for the three infestations.

The transparencies were provided by USDA
ARS, 509 W. 4th Street, Weslaco, Texas, with
special assistance given by M. R. Davis, and
S. J. Ingle.

1979 Machine Processing of Remotely Sensed Data Symposium
405



Figure 10 G-2 Tree Classification

10.

11.

Figure 11 BSS5-19 Tree Classification
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