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PROCEDURE M: A FRAMEWORK FOR STRATIFIED
AREA ESTIMATION

RICHARD J, KAUTH, RICHARD C. CICONE,
WILLIAM A, MALILA v

Environmental Research Institute of
Michigan

I. ABSTRACT

This paper describes Procedure M, a
systematic approach to processing multi-
spectral scanner data for classification
and acreage estimation. A general dis-
cussion of the rationale and development
of the procedure is given in the context
of large-area agricultural applications.
Specific examples are given in the form of
test results on acreage estimation of
spring small grains.

II. INTRODUCTION

The central theme of this paper is
that Procedure M is not to be character-
ized by the particular collection of
algorithms of which it is composed at this
point in time, since it is thoroughly
modular and flexible in the information
sources it can utilize, the transfor-
mations employed, and the information to
be extracted. Rather it should be char-
acterized by its conceptual framework
which may be expressed in terms of pro-
cessing functions. Procedure M is the
current, still imperfect, representative
of a philosophy of information extraction
from remotely sensed data which has been
pursued for 15 years.

Neither is Procedure M an exclusively
ERIM invention. The gradual development
of a processing philosophy has come about
by interaction with and contributions from
many individuals and groups within the
remote sensing community.

In Section III which follows, we
first describe the historical background
of the development of Procedure M. . In
Section IV we turn to a description of the
Procedure, first in generic terms and then
in terms of the particular collection of
algorithms which constitute the current
spring small grains configuration of the
Procedure. In Section V we present some
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tests of the procedure. Section VI pre-

sents a summary.

III. BACKGROUND

An important aspect of the world en-
vironment is the state of agriculture --
the amount and kind of food products
available region by region throughout the
world. For many years there has been a
gradual development by the U.S. Depart-
ment of Agriculture (USDA) of an infor-
mation gathering and forecasting system,
both for domestic and foreign agriculture.

In the last several years, remote
sensing techniques have been in the pro-
cess of being developed to assist signi-
ficantly in the process of information
gathering, for numerous types of environ-
mental management problems. The National
Aeronautics and Space Administration
(NASA) in particular has supported the
development of aircraft and spacecraft
remote sensing instruments and infor-
mation extraction techniques. ERIM has
been deeply involved in this effort, de-
veloping. the first.airborne multispectral
scannersl’ and having a continuous 15-
year history of improving instruments and
increasing understanding of the underly-
ing physical phenomena and the techniques
of processing the data to obtaig_i?e
desireable information from it.

Specific applications to agricultural
problems have been initiated and led by
NASA's Johnson Space Center (JSC) over
the past decade. One of these was the
Corn Blight Watch Experiment (CBWE)
(1970), with iirborne scanner data and
photography.l The purpose aof the CBWE
was to assess the capability of remote
sensing to track the spread of the
Southern Corn Leaf Blight northward
across the U.S. Corn Belt.
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With the launch of the Earth Re-

. sources Technology Satellite (now Landsat)

in July of 1972, it became possible to
consider the application of spaceborne
Multispectral Scanner (MSS) data to the
task of commodity production forecasting
over world or national regions. An early
attempt was the Crop Identification Tech-
nology Assessmfgt for Remote Sensing pro-
ject (CITARS). This project involved
efforts by the Earth Observations Division
(EOD) of NASA's Johnson Space Center (JSC),
Purdue University's Laboratory for Appli-
cations of Remote Sensing (LARS), and ERIM
in an intensive effort to apply then cur-
rent state-of-the-art information ex-
traction techniques in an evaluation of
the feasibility of inventorying corn and
soybeans in Indiana and Illinois.

The possibility of using the Landsat
plus collateral data to monitor the wheat
production in the world's major wheat pro-
ducing regions arose out of the experience
gathered in CITARS and elsewhere, plus the
occurrence and impact of major wheat crop
failures around the world. The Large Area
Crop Inventory Experiment (LACIE) was
initiated by NASA and carried out jointly
with the USDA and the National Oceanic and
Atmospheric Administration (NOAA), to test
the feasibility of using Landsat MSS data,
weather data, and historical data to esti-
mate the production of wheat at harvest, in
seven major wheat producing countries.
LACIE ran through three phases -- crop
harvest years 1975 through 1977. Now in
the AgRISTARS project, the feasibility of
extending LACIE technology to multiple
crops and world regions is being explored.

In each of these exercises, the
attempt was to use and evaluate existing
techniques and, in each case, the existing
techniques were found wanting in some re-
spects. That this would be true was re-
cognized in advance. One of the stated
purposes of the LACIE was to ‘''research and
develop altermate approaches and techni-
ques...wherg required to meet performance
goals...".1> And indeed there has been
substantial growth in the technology of
information extraction during the LACIE
program.

At JSC, Procedure 1, which embodies a
fundamental re-thinking of the methods of
using remotely sensed data in estimation
procedures, was developed and implemented
in LACIE by NASA/EOD and Lockheei E};c-
tronics Company (LEC) personnel. 6,

LARS acquired field measurements data for
use in developing insights into the tem-
tempordl-spectral description of crop
canopies, and has advanced the art of
sampling design for remote sensing surveys.
The Remote Sensing Program at the Univer-

sity of California at Berkeley (UCB) had
developed advanced techniques of photoin-
terpretation, sampling designs, and
stratification.

ERIM's contributions were in develop-
ing advanced techniques for acreage esti-
mation, including preprocessing techniques
to reduce atmospheric and sensor-related
effects, clustering and training techni-
ques, unbiased sampling and estimation
techniques, and in developing and applying
agrophysical understanding through model-
ing and empirical data analysis. The re-
sults of these efforts have been incor-
porated into Procedure M, a procedure for
acreage estimation of multiple crops which
further develops the basic approach of
Procedure 1.

A viewpoint that has been reinforced
by the LACIE experience is the essential
need for validation of the estimation
procedures. In addition to its estimated
quantities, as stated above, we believe
that every information system ought to
provide estimates of the error distribu-
tion of its forecasts. We have attempted
to follow this philosphy in the develop-
ment of Procedure M. One of the most
valuable legacies of LACIE is a large
supply of accurate ground truth informa-
tion and associated Landsat data and in-
place procedures for continuing to acquire
more of it. Without such data, tests of
the types described in this report are
impossible. 1In our view, real progress in
the development of remote sensing is now
fully dependent c¢n such tests. An example
of the use of such data in testing of
Procedure M is given in Section V.

IV. DESCRIPTION OF PROCEDURE M

In this section we discuss the general
processing functions which form the frame-
work for Procedure M; a particular current
implementation of those functions; and
similarities and differences from other
current techniques.

A. GENERAL PROCESSING FUNCTIONS

Two conceptual areas drive the for-
mation of Procedure M; statistical esti-
mation and physical understanding.

The central concept in all pattern
recognition problems is the conditional
probability density, Pr(X[8), of the ob-
servations X, given the state 6. From the
point of view of statistical decision
theory, one has in hand a set of obser-
vations, X, and wishes to classify them
into categories or in general to estimate
some parameter, @, which is thought to
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have influenced those observations. 1In
addition one has access to a set of joint
observations of X and ©, usually called

the training data. Pattern recognition or

statistical estimation procedures attempt
to use the training data to characterize
the density function Pr(X|@) in sufficient
detail for the purposes at hand. The most
commonly documented failure :of pattern
recognition is to attempt to write pro-
cessing algorithms based on insufficient
knowledge of this density function.

If the dimensionality of the obser-
vations, X, is large, as it usually is, it
is difficult in practice to estimate
Pr(X|0) from measurements. It is tempting
to simplify the problem by ignoring some
of the observables. Ignoring them, how-
ever, does not change the fact of their
importance.

In pattern recognition it is conven-
tional to place the burden of this diffi-
cult problem into precursor steps called
preprocessing and/or feature extraction.
The purposes of preprocessing and feature
extraction of remote sensiné data have
been described as follows:10 .

1. To make the data more comprehensible
by adjusting all of them to standard con-
ditions of observation.

2. To eliminate or flag bad or noisy
observations in the data.

3. To make the data more comprehensible
by extracting physically meaningful fea-
tures or projecting the data in such a way
as to display their physical structure.

4, To compress the data, retaining most
of the information and averaging out noise
and redundancy.

5. To make the distributions of the de-
rived features fit some convenient model
such as the multivariate normal distri-
bution (This step is not used in the cur-
rent implementation of Procedure M.).

The primary role .of physical under-
standing is in the development of prepro-
cessing and feature extraction techniques
which lead to derived features which carry
most of the desired information content of
the original observations. The central
guiding point of view is that one ought to
attempt to unravel the information content
of signals in the inverse order in which
they were generated.

Following the philosphy that one
ought to unscramble the signals in inverse
order leads to the preprocessing/feature
exXtraction steps described later in

Section IV.B.

From a statistical viewpoint, once
feature extraction has occurred, one is
still fdced with a set of extracted fea-
tures, Y, and some quantity to be esti-
mated, 6, and it is still necessary to
characterize the density function, Pr(Y|e)
with sufficient detail to meet the require-
ments of the problem at hand. The para-
meters of the chosen characterization of
the density function are usually called
signatures. Thus, in early developments
of multispectral classification techniques
the density functions of various classes
were represented by normal density
functions, whose means and covariances
(signatures) were estimated from the train-
ing data. More recently, in Procedure 1,
part of the training data were used to
establish an estimate of signatures which
were used to separate the data into two
strata, S, and S, ("wheat" and '"non-
wheat"), éefined with respect to the ob-
servations, Y. The remainder of the train-
ing data is then used to make a stratified
areal estimate (SAE) following the classi-
cal techniques of survey sampling. Im-
plicit is the fact that the estimate of
the posterior probability density function
Pr(0[XeS;) is refined by using the re-
mainder of the training data in this way.
In this formulation the prior probability
distribution of the condition © is auto-
matically taken into account by sampling,
and the procedure is unbiased if the
identification labels on the second part
of the training data are accurate.

In Procedure M the same concept is
carried out using multiple strata, Si,...,
Sy, produced in an unsupervised clustering
o? the data with respect to the feature
set Y. Stratified sampling procedures are
used to select the sample to be labeled.

Often the comment is made, with re-
spect to physically based feature extrac-
tion, that something important may be lost.
An appropriate response is that if one
suspects that to be the case, then he
should carry along in the revised feature
set, Y, enough information to reconstruct
the original signal, X. Then, if some
subset of the Y's do indeed carry most or
all of the useful information, this will
become evident with use and experience.

B. CURRENT IMPLEMENTATION
In its current configuration Procedure
M carries out its functions through the

specific algorithms and steps defined in
Table 1.
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V. DEVELOPMENT AND TESTING OF
PROCEDURE M

Several tests of Procedure M under

various configurations have been conducted.

These tests were carried out to evaluate
not only the overall accuracy and
efficiency of the procedure, but also the
individual performance of each of its
components. Described in the following is
a test conducted with sample segments lo-
cated in the Northern Great Plains of the
United States.

A. TEST SITE AND DATA SET

Spring small grains, predominantly
wheat, barley, and oats, are an important
agricultural commodity grown in the
Northern Great Plains of the United
States. For example, typical annual pro-
duction there of spring wheat is in the
vicinity of one-half billion bushels and
represents roughly one-quarter of the of
the total U.S. annual production of wheat.
Seventeen 5x6-mile sample segments located
throughout North Dakota and Western
Minnesota were selected to evaluate the
performance of Procedure M. These were
among the sites for which ground inven-
tories were conducted for use in accuracy
assessment and performance evaluation of
LACIE Transition-Year procedures.

. The data base analyzed consisted of
multidate Landsat MSS data and associated
digital ground truth collected during the
1978 season by ground observation and in-
terpretation of aerial photography, crop
identification labels derived by interpre-
tation of Landsat imagerv. and a number of
features computed or derived from these
data. The sites selected for analysis
were distributed so as to represent a
variety of agrononic conditions. The
actual proportion of spring small grains
present in each site varied from six to
sixty percent, in all averaging 35.6%.
Field sizes varied substantially and strip
cropping was practiced in a number of the
test sites.  Other notable ground covers
included pasture and summer planted crops.

B. EXPERIMENT DESIGN

Key‘elements of the evaluation that

was conducted included (1) characterization

of the overall bias of the procedure, (2)
characterization of the variance of its
estimates, (3) evaluation of the field
definition component, and (4) evaluation
of the spectral stratification component,

'~ Each of the seventeen sample segments
was processed through the procedure,
utilizing both ground truth and analyst-
derived labels, with a number of different

parameter settings. The key parameters
included (1) the size of the quasi-field
sample group selected from the usual popu-
lation of 300 to 500 quasi-fields (i.e.,
60, 80, 100, or 120), (2) the number of
spectral strata identified (1, 20, 40, or
60) and (3) the specific sample group
randomly selected (50 different sample
group selections were made in each site
for each parameter setting). In all, 1,600
crop area estimates were derived for each
site.

Once the estimates were computed, a
number of statistical analyses were con-
ducted. Both descriptive statistical
tools, like frequency tables and scatter
plots, and inferential statistical proce-
dures, like ANOVA, regression, and discri-
minant analysis, were utilized in the
evaluation.

C. RESULTS

Evaluation of the performance of the
spring small grains configuration of Pro-
cedure M will be discussed by addressing
the four questions that were of particular
interest. The procedure was found to be
largely unbiased with respect to the
source of sample labels with a reduction
in the variance of the stratified area
estimate over LACIE Procedure 1 and un-
stratified estimates. Quasi-field de-
finitions were notably pure with respect
to ground truth, and the resultant purity
of spectral stratification based on un-
supervised clustering applied to the
largest quasi-fields particularly benefited
by the elimination of the smallest quasi-
fields since these contained most mixture
pixels. Estimates based on analyst labels
revealed that performance primarily de-
pended upon the accuracy of those labels.
Modeling of the procedure has analytically
quantified this empirical finding. Details
25 this result can be found in Reference

i. What are the bias (i.e., -accuracy)
characteristics of the procedure? Over the
seventeen test segments, the overall error
in the small-grain proportion estimate when
ground truth labels were used was 0.08%
which was not significantly different than
zero. This would, at first glance, indi-:
cate that the procedure is unbiased. How-
ever a slight bias in a given segment is
possible since only larger quasi-fields
are sampled. Smaller quasi-fields are
omitted since mostly mixture pixels reside
in that stratum and the accuracy of labels
for such samples is more likely subject to
error. Figure 1 illustrates the propor-
tions derived for each segment for forty.
spectral strata and one hundred quasi-
field samples. Sites containing more than
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35% spring small grains were slightly
overestimated and others underestimated.
This trend was found to be related to the
average field size of the dominant crop.
Though subject to further research, the
bias introduced is felt to be slight com-
pared to the potential bias that would be
introduced by mislabeling of mixed pixels
in the smaller quasi-fields.

ii. What Variation in the Estimates
can be Expected as Sampling Parameters are
Changed? Using fifty Monte Carlo itera-
tions of the quasi-field sample selection
and ground truth labels, procedure vari-
ance characteristics were computed. Re-
ductions in the variance of the estimates
were noted as a function of spectral ‘
stratification and sample size, as illus-
trated in Figure 2. The ratio of the
variance measured for each stratified
estimate to that of the unstratified esti-
mate can be used as a variance reduction
measure to quantify the improvement of
performance. For forty strata and one
hundred samples, the variance reduction
factor was 0.59 over unstratified sampling
This means that by stratification through
spectral clustering only 59% as many
samples would be required to achieve the
same level of performance in terms of
variance as in the unstratified case.
Comparison of these empirical results to
those achieved by the LACIE Procedure 1
indicate a significant gain in efficiency.

iii. Are Quasi-Field Patterns Pure?
; The principle sampling unit of Procedure M
is the quasi-field extracted automatically
by a multi-temporal spatial and spectral
clustering algorithm called BLOB. It is
crucial that the quasi-fields formed are
pure relative to the crops of interest.
Evaluation of the BLOB algorithm revealed
that this basic assumption was well
founded. The quasi-fields were found to
visually correspond to actual fields.
Figure 3 illustrates a typical result of
the algorithm. Small fields and the
boundaries of larger fields were omitted
to clarify the illustration. Figure 4
illustrates a histogram of quasi-field
purity. The majority are.clustered.at the
two extremes of the histogram, indicating
that the quasi-fields are relatively pure.
The average purity of the 6,000 quasi-
fields in the seventeen segments was 93%
either grain or non-grain, with more than
80% of the quasi-fields at least 80% pure.

‘ iv. Are Spectral Strata Pure?. The
reduction of variance realized through
Spectral stratification of the quasi-
fields is achieved by forming strata that
are purer than average with respect to the
Crop types of interest. The BCLUSTER
algorithm utilized is a simple unsuper-

vised clustering algorithm that is cur-
rently used to form strata using spectral
means of quasi-fields contained in the
stratum to be sampled. - BCLUSTER can. be
controlled to produce any predefined num-
ber of strata or 'beclusters'. Figure 5
illustrates the purity of strata for each
of three size settings. The percentage of
strata that are pure non-grain remains re-
latively constant independent of the num-
ber of strata targeted. This implies a
significant level of separability between
certain grains and non-grains. However,
the percentage of relatively pure grains
shows a dramatic increase from 20 to 40
bclusters.  The implication is that a large
percentage of grains and non-grains are
spectrally close, and a finer threshold
level 'is required to produce sufficient
strata to separate the two classes.

Comparison of these results to com-
parable stfgies using more sophisticated
algorithms imples improved stratifica-
tion with BCLUSTER over ISOCLAS, AMOEBA,
and CLASSY. It is conjectured, however,
that much of the apparent improvement is
due to excluding the stratum of small
quasi-fields in the stratification, rather
than to improved clustering procedures.
The elimination of mixture pixels, which
act as a spectral smoothing mechanism,
makes pure spectral distribution more
apparent. Recent studies have borne out
this conjecture.

VI. SUMMARY

Procedure M is an example of strati-
fied area estimation (SAE) technology.
SAE incorporates stratified random sampling
as the primary means for producing area:
estimates of classes of interest. It dif-
fers from the common multispectrally based
estimation technology in which a classi-
fier, like maximum likelihood, is utilized.
Rather, a robust statistical sampling
framework is coupled with a mechanism to
label or identify samples in the stratified
context provided by remotely sensed data.
In addition, extensive use of state-of-
the-art remote sensing processing techno-
logy has been utilized for such purposes
as dimensionality reduction, atmospheric
haze correction, and automatic definition
of fields.

Note: This work is sponsored under Con-
tract NAS9-15476 by the U.S. National
Aeronautics and Space Administration
through the Earth Observations Division of
its Johnson Space Center, Houston, Texas.

The authors represent a technical de-
development team composed of many other
ERIM staff members.
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Currently configured for crop area
estimation applications, it could readily
be adapted to other resource applications.
The salient features of Procedure M in-
clude:

multicrop - estimates of any number
of crops can be produced

- multitemporal - any number of Land-
sat acquisitions can be utilized

multisegment - any number of segment
samples, each at least larger than
a field, can be utilized

modular - procedure components are
interchangeable; as components are
improved, they are simply inserted
in place of existing ones

statistically stable - the bias and
variance of the estimates are de-
terminable and consistent results
are produced to the precision of
the labeling mechanism

Six stages of Procedure M have been
described above. These stages include
data preparation, feature extraction,
stratification, sample selection, attri-
bute assignment and aggregation (or esti-
mation).

- Two configurations of Procedure M
currently exist, for spring small grains
inventory and for spring wheat inventory.
Extensive research, development and test-
ing of the procedure has taken place.and
its applicability to the general problem
of resource inventory is well established.
This paper presents experimental results

from the spring small grains configuration.

Currently Procedure M is being recon-
figured for application to Corn and Soy-
beans area estimation. In this new con-
figuration special emphasis is being
placed on creating a close relationship to
analyst interpreters, to provide feedback
to the analyst and to retain statistical
control of the area estimation procedure.
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Table 1.

Step
Calibration

Screening

View Angle Correction
Acmosphere Corraction
Solar Angle Correction

Data Preparation

Spectral Feature
Extraction

Spacial Feacure
Extraction

Temporal Feature
Extraction

Feature Extraction

Stratification

Sample Selection

Attribute Assignmentc
(Labeling)

Estimation of Segment

Algorithms

Used in Current Configuration of Procedure M

Comments

To make data from different
sensing instruments comparable.

To flag bad or noisy data.

To make data from different
places and times coumparable.

To emphasize the physically
aeaningful components of the
spectral reflectance, and
compress data volume.

' For agriculture, to group pixels

into fields, average pixel-to-
pixel noise and reduce confusion
of mixture pixels.

For agriculture, to extract
physically meaningful components
of the temporal reflectance
spectyum, smooth over missing
observations and compress data
volume.

To provide basis for unbiased,
efficient areal estimation
technique based on labels.

To insure unbiased low variance
estimates.

Stratified areal estimace.

Algorithm or Source

Landsat 3 to Landsat
2 Transformation

SCREEN
XSTAR

TASCAP (Tasselled
Cap Transform)

BLOB

Trajectory fitting
techniques on
Greenness values
vs., time

BCLUST

Midzuno sampling
technique

Analyst labels small
grains. Machine .
trajectory analysis
labels wheat vs.
barley.

Final output at
segment level.
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Figure 1. Procedure M Segment Estimates of Total Spring Small Grains

1980 Machine Processing of Remotely Sensed Data Symposium
116



Figure 2.

Figure 3.

Other-Site

Spring Wheat Estimates

-
- (19 Segments)
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(4 Segments)
RMS (E-T) = 5.42
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Figure 4. Distribution of Pixels Within BLOBS vs. Percent Grain
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Figure 5. Distribution of the Number of Pixels Within BCLUSTER Grain Percentage
Levels
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