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ABSTRACT

Standard image processing techniques are not
applicable to radar images because of the coherent
nature of the sensor. Therefore there is a need
to develop preprocessing techniques for radar

_images which will then allow these standard
methods to be applied. A random field model for
radar image data is developed. This model des-
cribes the image data as the result of a multi-
plicative-convolved process. Standard techniques,
those based on additive noise and homomorphic
processing are not directly applicable to this
class of sensor data. Therefore, a minimum mean
square error (MMSE) filter was designed to treat
this class of sensor data. The resulting filter
was implemented in an adaptive format to account
for changes in local statistics and edges. A
radar image processing technique which provides
the MMSE estimate inside homogeneous areas and
tends to preserve edge structure was the result
of this study. Digitally correlated SEASAT-A
synthetic aperture radar (SAR) imagery was used
to test the technique.

I. INTRODUCTION

The goal of spaceborne synthetic aperture
radar (SAR) systems is to remotely collect in-
formation concerning agriculture, vegetation
health, sea state, soil moisture, geology, snow-
pack conditions, etc. This goal will be aided
through manual and machine analysis of the SAR
imagery. Manual interpretation may be required
for geologic analysis while quantitative auto-
matic processing will be needed for measuring
soil moisture, agriculture, etc. In each case
processing the image data is desirable-to improve
the quantity and quality of the extracted infor-
mation. A random field model following {1] has
been developed for radar data. This model accu-
rately represents the noise process for radar
image data as being convolved-multiplicative
noise. Therefore, standard techniques developed
for image processing in the presence of -additive
noise [2] or simple multiplicative noise which
can be treated using homomorphic techniques [3]
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are not directly applicable to SAR data.

The purpose of this paper is to present one
digital processing algorithm which has been suc-
cessfully applied to SEASAT-A SAR digital imagery.
This technique was developed by first modeling the
SAR system and data characteristics. Next a per-
formance criterion was selected and an optimum
filter designed with respect to it. Because of
its mathematical tractability the minimum mean
square error {MMSE) was used. This criteria had
been a-plied with some success in the past to
image processing of signal dependent noise [4,5].

" the MMSE is not the only suitable performance

criteria; others, for example those incorporating
specific aspects of the human visual system [6],
should be investigated in the future.

: The following sections will present the sys-~
tem model used in this study and a summary of the
development of the processing technique. An
adaptive algorithm that changed its impulse re-
sponse based on local statistics was the result
of this theoretical analysis. This approach -is
similar to that followed by others [6,7,8], but
here the criteria for adapting the impulse res-
ponse is directly related to the specific form of
the sensor data. That is, this technique has been
specitically designed to treat radar image data.
Results are presented next which illustrate the
algorithm. ‘

II. A SYSTEM MODEL FOR RADAR IMAGE PROCESSING

The spaceborne imaging radar is able to meas-
ure & quantity directly related to the terrain
backscatter coefficient, o®, as a function of
position with relatively fine resolution (The
SEASAT-A SAR had a spatial resolution of 25m as
compared with 80m for LANDSAT). The terrain
backscatter coefficient as a function of position
will be defined as

a%(x,y). (m

This quantity will also be defined as being a
deterministic function of position. The signal
actually recorded is the random instantaneous
terrain reflectivity which will be defined as

r'(x.y). ‘ (2)

This quantity will be modeled as containing two
random components. The first component represents
the random changes in terrain backscatter across
the scene. This comes about because a typical

SAR scene is composed of many different target
classes and thus field boundaries exist. The
location of these field boundaries are not known
apriori and thus are modeled as occurring randomly
within the scene. In‘addition random vaviations
arise from the changes in backscatter within
individual fields. For example, wheat fields
at the same time in the growing season and under
similar physical conditions, e.g., the same soil
moisture, are said to have a specific o-. But
SARsensing a large wheat field will record slight
variations (other than fading) due to changes in
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backscatter across the field. Even though
all wheat fields taken as an ensemble will exhibit
an expected value defined as o®, the SAR only
senses one sample function of this ensemble. The
component of the instantaneous terrain reflectiv-
ity which incorporates field boundaries and intra-
field variations will be defined as r'(x,y) and
will be normalized by the resolution area of ~the
sensor, A, i.e.
r'{x,y)

/n

r(x,y)= (3)

Where r(x,y) is the normalized r'(x,y) and is a
sample function of a random process with

a®(x,y}=E[{r(x,y)}] . (4)
where
{r(x,y)} = ensemble of sample functions.

As expected the random process {r(x,y)} is not sta-
tionary in general. But if attention is focused
on a homogeneous target area, Ay, then by defini-
tion {r(x,y)} is stationary in XT'

The second random component of the instantan-
eous terrain reflectivity is fading. Fading is
a well-known phenomenon because it is observed
whenever a coherent illumination is used [9,10].
If we define the instantaneous received power as
Pr|(x,y), i.e. received power given a position
(x,y), then the probability density function (for
a Rayleigh target) across the ensemble of received
power {Pn(x,y)} at (x,y) is given by [9].

£ (P 1(xuy))=[Ppl (xuy) VT exp -[fzJ‘X’Y)]
r Fr

(N-T)! [;?ﬂ N (5)

where

Py=E[P.|(x,¥)] :
N =Number of looks averaged

A simple change of variable yields [11]

Pr(x,y)=P (x.y)n(x.y)
2N (6)

wherg
Pp (x.¥)=ELP (x,¥)} .

The random process {n(x,y)} characterizes the fad-
ing vaETations {9]. Note that n|(x,y) has a stan-

dard x¢ probability density function and that
E[{n(x,y)}]=2N=n (7)
Var({n(x,y)}]=4N=o§ (8)

The process {n(x,y)} is stationary. Next a re-
lationship between the two components of the in-
stantaneous terrain reflectivity will be defined.

- The expected return power P.(x,y) is found from the
radar equation [12] as

R(x,y)jPTszzAf(x,y)
(a3t (9)
where

PT=Transm1'tted power

G =Antenna gain

A = Resolution cell area

R = Range distance to resolution cell
Using ' equation

Po(xsy)= EL{r(x,y)}]-K

where

(4) Py can be written as

p 2,2
K—PTG ACA
(4n) 3R (10)
Applying equation (6)

P,,(x,y)=E[{r(x,y%L] - n{xy) : K

()

In practice though E[{r(x,y)}] is not available
only one sample function r(x,y) is sensed by

the radar so the actual received power (dropping
the constants) is modeled as

Pr(x,y)=r(x,y)-n(x,y) (12)

The received power described above is not directly
observable in most SAR systems because the antenna,
receiver, correlator and film (or digital re-
corder) introduces a spatial correlation which

can be described in total by a single point

spread function, h(x,y). Therefore the observed
SAR image is modeled by

I' (x,y)=P . (x,y)*h(x,y)=[r(x,y) -n(x,y) Jxh(x,y)
(13)
where

* denoted a convolution
I'(x,y)=observed SAR image

The dominant source of randomness in radar image
data is fading. This model separates the sta-
tionary fading component, n(x,y), from the back-
scatter component, r{x,y). - Once r{(x,y) is esti-
mated, homogeneous areas will be easily found
using standard image segmentation techniques.

The following estimation technique attempts to re-
move the fading noise and thus generate an image
of just r{x,y).

Upon cursory examination of equation (13) it
appears that deconvolution techniques could be
applied to received power,r(x,y)-n(x,y), then
homomorphic filtering used to estimate r(x,y).
Unfortunately radar image data has noise charac-
teristics, i.e., small signal to noise ratios,
which precludes the use of deconvolution tech-
nighes because those methods tend to amplify the
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high spatial frequency noise.
I1II. SUMMARY OF THE ALGORITHM DEVELOPMEMT

The minimum mean square error (MMSE) filter
which will be derived next for radar image data
is that 1in5ar transfer function, m(t), which
minimized €¢ where

e2=E[(s(t) - m(t)*z(t))?] (14)
where

t=(x,¥), a point in the spatial plane
s{t)= desired signal
z(t)=observed signal

The transfer function m(f) has been derived as [13]

M(f)= st(f)

ST (15)

where
M(F) =[m(t)ef“"ft dt

f=(fx,fx), a point in the spatial frequency
SZ (f)=cross power spectral density plane

Sz(f) =power spectral density of z

Using the model derived above for the radar image
data the MMSE filter for homogeneous (stationary)
areas is found in general to be [14]

w(5)S1r(f) o TS (OHF) - 7 75 ()
S TS, (715, (FINH(FI [2-(nr)25(F)
(18)

where

I( t)=1'(t ) - E[I'(t )]

H(t)=f h(t)ed2"ft 4t
assuming that

H(f)=rectB(f) (17).

R (t)=026(t) + n? (18)

n 5 -alt|, =2

R.(1)=cf e tr (19)

where B=system bandwidth

then the MMSE filter becomes the cascade of two
filters, i.e.,

M{F)=[recty(f)]- K1
1+ 4n2 (f)z

o
where

— 2 2(2 2
2no, + on(r +Gr) (20)

The second term in this equation governs the major
characteristics of the filter thus the impulse re-

sponse of the MMSE filter for radar image data
can be written as

m'(t)=K]ae‘°‘|t| (21)

where

Bila
03 = — +
a“’n’ '|+(L)2jl a
Op

The minimum mean square filter described by equa-
tion (21) has some interesting properties. We
have tacitly assumed that both {r(t)} and {n(t)}
are widesense stationary random processes. This
assumption regarding n(t) is va]}d over an entire
radar image because both n and ¢f are functions
of system parameters which can be assumed to be
constant if the scene is composed of only Ray-
leigh targets. But {r(t)} is stationary only in
an individual homogeneous region and thus the
filter is theoretically applicable in only those
areas. We will next show that even though this
filter is theoretically valid for homogeneous
regions if a is varied (adapted) with respect to
scene conditions then the filter does not overly
degrade edges between homogeneous areas. Similar
techniques have been successful [1,8].

Consider two homogenegQus (stationary) areas
Ay and Ap with ¥i=r, and o§]< oZ  then from the

equation (21) we find that 2

a >o (22)

This result indicates that the impulse response
of the MMSE filter for A; is narrower than the
filter for A,. Because }r(t)} is the quantity
being estima%ed this is expected, i.e., if r(t)
has a large variance then a wide impulse response
would excessively average the desired variation
in backscatter; thus for areas with o4 large the
impulse response of the filter should be narrow.
On the other hand if r(t) has a small variance
then a wide impulse response would be advantageous.
Next consider an area, A3, which contains a
boundary between two stationaty areas Ay, AZ'
First note that A3 is not a stationary area so
theoretically this filter does not provide the
minimum mean square estimate. But let us investi-
gate its properties at an edge to evaluate its
practical application to real radar image data.
The presence of an edge will result in a large
variance (i.e. bandwidth) for r(t) in Ry. We
would thus expect

2 2

o >0 (23)
3. N
2 2

o >0 (24)
3

So for an area encompassing an edge this MMSE
filter will average less and therefore preserve
edge structure.

If a is estimated from the observed data with-
in some neighborhood the filter would then adapt
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to local changes in r and 02. This type of esti-
mation technique would then exhibit two very im-
portant characteristics. First it provides the
minimum mean square estimate of r(tg in homogen-
eous areas. Second it tends to preserve edge
structure.

As mentioned above o must be estimated from
the observed data so that the filter will exhibit
the desired properties. It can be shown that [14]

v P11 2
a—K{I /T'] (25)

where

K2=constant of proportionality
c%.=observed image variance
T'=observed image mean

Therefore we estimat%:I}__) in local regions
(e.g. a 5x5 neighaﬁrhood% ndI adaptively change

2

a in proportion t I} as the impulse response

is applied to the sadg image. The resulting
technique is the MMSE estimate within homogeneous
areas and tends to preserve edge structure.

IV. RESULTS

An adaptive algorithm as described in the
previous section was implemented. The program
requires three parameters. The first parameter
defines the number of different filters, NF, to,
be used. That is, the program calcu]ate*FI} )
for a local region then uses that value T
to select one of NF precalculated weightings.
Even though all examples presented here used a

eighbgrhood (observation area to calculate
CI'/_ and a filter size of 5x5 pixels, the pro-

]
ra* is designed to accept different neighborhoods
and filter sizes. The next parameter required is
directly proportional to the constant K2 in equa-
tion (25). A maximum «, a_, is specified and each
filter is calculated using
i1 i-1

m(x,y)=e"‘<'”s-) e'Y(T)/n

where

(26)

i=filter number
s=NF—2/
“m

n=normalization factor

The first filter (i=1) uses equal weighting for
all elements and the last filter (i=NF) uses unity
weighting on the center element and zero weighting
on all others. The second through NF-1 filters
are defined by equation (26). The final parameter
used in this algorithm defines how the measured
local statistics are used to sefect a particg]ar
filter. A constant K, is selected and the i h
filter is chosen by

2

. Ory

i=K, ( 1 /T') (27)

To summarize the procedure, first the three
parameters, NF, o , and K; are specified. Next,
the algorithm pre@a1cu1atés NF-2 filters {remember
the first and last filters are fixed) using o _.
Third, a moving window of variab]ezsize is used
to gather local statistics °I}__ around each

]

pixel and this information is &sed to select a
specific filter. The final step involved applying
the filter to the original radar image data. The
results presented here used NF-40, o =6.5, K,=75.

The first scene used was a test area which
contained a series of corner reflectors. These
are point targets in the resulting SEASAT-A SAR
imagery. This processing algorithm was applied
and in the resulting image the point targets re-
mained basically unchanged while the noise was
significantly reduced in homogeneous areas (Fig-
ure 1). The second scene was near Knoxville,
Tenn., and contained significant terrain relief.
The processed SAR image of this area shows how
the technique improved the utility of spaceborne
SAR data for gedlogic interpretation (Figure 2).
The final area contained several agricultural
fields (Figure 3).

V. CONCLUSION

A systems model for an imaging radar has been
developed and used to design an image processing
technique which has been successfully applied to
processing SEASAT-A SAR imagery, Results have
been presented which show the utility of this
technique. A quantitative evaluation of the re-
sults is currently under way. But the problems
associated with radar image processing have just
begun to be addressed. Refinements in the optimi-
zation criteria are required. Better systems
modeling, i.e., an accurate representation of
h(t) would aiso improve the techniques. Investi-
gations of feature classification from radar data
are also necessary.
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Fi?u re 2 o
SEASAT-A SAR Imqge 4 Looks) Geologic Features

Figure 3
SEASAT-A SAR Image (4 Looks) Agricultural Features
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