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CONTEXT DISTRIBUTION ESTIMATION
FOR CONTEXTUAL CLASSIFICATION
OF MULTISPECTRAL IMAGE DATA

JAMES C. TILTON, PHILIP H. SWAIN,
AND STEPHEN B. VARDEMAN
Purdue University

ABSTRACT

A classification algorithm incorpora-
ting contextual information in a general,
statistical manner is presented. Methods
are investigated for obtaining adequate es-
timates of the context distribution (a sta-
tistical characterization of context) upon
which the classification algorithm depends.
Finally, a method of estimating optimal al-
gorithm parameters prior to performing pre-
liminary classifications is explored.

I. INTRODUCTION

The most widely used method for clas-
sifying remotely sensed data from such
sources as multispectral scanners on air-
craft or satellite platforms is a point-by-
point classification technique in which da-
ta from each pixel in the scene are classi-
fied individually by a maximum likelihood
classifier [1]. The information normally
used by this classifier is only spectral
or, in some cases, spectral and temporal.
There generally is no provision for using
contextual information.

In contrast, when scanner data are
displayed in image form, a human analyst
routinely uses context to help decide what
is in the imagery. Using context, he may
be able to easily pick out roads, delineate
boundaries of agricultural fields, and dif-
ferentiate between grass in an urban set-
ting (lawns) and grass in an agricultural
setting (pasture or forage crops) where a
maximum likelihood point classifier would
have much difficulty in doing so.

Recently we have developed a classifi-
cation algorithm which incorporates contex-
tual information in a general, statistical
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manner [2]. This algorithm exploits the
tendency alluded to above of certain grou-
nd~-cover classes to be more likely to oc-
cur in some contexts than in others.

An estimate of the "context distribu-
tion" (a statistical characterization of
the context in the scene to be classified)
must be made before this classification al-
gorithm can be used. Methods are investi-
gated here for obtaining sufficiently ac-
curate estimates of the context distribu-
tion. The process of estimating the con-
text distribution can involve a large num-
ber of preliminary classifications using
the statistical context classifier. With
the goal of limiting the number of prelimi-
nary classifications needed, a method of
predicting the optimal algorithm parameters
without performing classifications is ex-
plored.

II. THE CLASSIFICATION MODEL

Remote sensing imaging systems gene-
rally provide data in the form of a two-
dimensional array of N=leN2 pixels of

fixed but unknown classification. Let the

observation at image coordinates (i,j) be

Xij and the true but unknown classification
at that image point be eij
where m is the number of cover classes re-
presented in the scene, and w, is the kth
cover class. Associated with each Xij and

€ {wlrwzrc ..,wm}

eij is a class-conditional density p(Xij|

eij)' The maximum likelihood point classi-
fier estimates each eij
Decide eij=wk if and only if gk(Xij)

>
= gz(xij) for all £=1,2,...,m where gk(Xij)

in the following

way:

is the discriminant function

and p(wk) is the prior probability of class

Reprinted from MACHINE PROCESSING OF REMOTELY

SENSED DATA, June 1980

171



wk occurring in the scene.

estimate for p(wk) is not known (or even

Usually a good

sought) , and the approximation p(wk) = 1/m
is used (uniform priors).

Contextual information can be incor-
porated into a decision rule of the same
general type by modifying the discriminant
function. Let the context at image point
X.. consist of observations spatially near,

i)

but not necessarily adjacent to, Xij’ Gr-

oup these observations along with Xij into

a vector of observations Eij =(X1,X2,...,

Xp)T with X =X_j and the number of observa-
i

p .
tions taken as context being p-1 (the or-
dering is fixed but arbitrary). Call the
arrangement of pixels in Xi' the p-context

]
array. Let the possible classes associated
i P _ T
with Kij be 6 (61,92,...,9p) where
6; € {wl,wz,..ﬂ,wm} and the ordering of the
elements in QP coincides with that in zij'

Assuming that the observations are class-
conditionally independent gives a discrimi-
nant function incorporating context as

m p

m
g, (X, .)= ... T p(x_|o )} c®)| (2)
k'=ig lg;l z;§£= n=1 nl “) -

where ep is fixed as [2]. The context

distribution, G(QP), is the relative fre-
quency of occurrence in the scene of the
class configuration in the p-context array

given by gp. The similarity of this dis-
criminant function to the function used by
the maximum likelihood point classifier be-
comes clearer by rewriting gk(gij) as

gk(x. )

—lj = P(Xijlwk)

=

[agE

p-1
( I p(x_|6 ))c(gp)
1=1\n=1 n-n

where ep is again fixed as w The summa-

k"
tion term carries the contextual informa-
tion and can be thought of as an expanded

context-carrying version of p(wk) from the

point classifier case. This discriminant
function is identical to the no-context
discriminant function when p=1 since

c(eh = ).

III. ESTIMATING CONTEXT DISTRIBUTION—-G(QP)

To evaluate gk(zij) we must know va-
lues for the p(X |6 ) and G(8F). Methods

for estimating p(xn|9n) are well establish-

ed from considerable experience in using
the no-context maximum likelihood decision
rule (as in Eg. 1) for classification (see
[1]). optimal methods for estimating G(6P)
are not yet established. Preliminary work
on finding practical methods for estimating
G(Ep) is presented in [2].

The most successful method developed
to date for estimating G(6P) goes as fol- :
lows: {

1. Perform a no-context uniform-
priors classification on the training set,
restricting the classifier's decision rule
to choosing among spectral classes in the
correct information class.

2. Estimate the context distribution,
G(6P), from the resulting 100 percent ac-
curate classification of the training set
by counting the number of occurrences* of
all possible class configurations given by

0% .

This method was used on a 50-pixel
square area from the north & corner of
the Large Area Crop Inventory Experiment
(LACIE) Segment No. 1860 in Hodgman Coun-
ty, Kansas. The class-conditional densi-
ties were estimated for the 16 spectral
classes from randomly located training
fields scattered throughout the entire 117-
by-194 pixel Landsat data frame. The co-
ordinates of the training set fields were
chosen by selecting pixel coordinates from
a random number table and surrounding the
selected pixel by the largest homogeneous
rectangle (up to field size 20 by 20).

The classifications were tested for accura-
cy over five information classes (pasture,

idle, wheat, corn and alfalfa) from "wall-

to-wall” pixel-by-pixel ground truth.

The restricted no-context classifica-
tion was performed over the first 25 lines
of the 50-pixel-square area and the context-
distribution was estimated over those 25
lines. The classification results were
evaluated over the last 25 lines. The re-

sults show (Table 1) that this method pro-
duced an estimate of the context distribu-

tion, G(gp), which in turn produced con-

The estimate of the context distribution,
G(6P), does not need to be normalized so as
to be an actual probability estimate. The
normalization factor does not affect the
classification decisions based on the dis-
criminant function in Eq. 2.
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Table 1
CLASSIFICATION CLASS RESULTS ON LACIE DATA
* %
Accuracy, %
Lines 23-50
26
Average-

Classification Overall by-Class

Uniform-priors no-context

-—-unrestricted 78.0 75.6
*

4 nearest neighbors 85.5 8l1.6
*

8 nearest neighbors 87.1 81.9

G(ep) estimated from restricted uniform-
priors no-context classification over
lines 1-25.

** Classification performance can be tabu-
lated in two ways. Overall accuracy is
simply the overall number of correct
classifications divided by the total
number attempted. Average-by-class ac-
curacy is obtained by first computing
the accuracy for each class and taking
the arithmetic average of the class ac-
curacies. The latter is significant
when the classification results exhi-
bit a tendency to discriminate in fa-
vor of or against a subset of the
classes.

textual classifications with significant
improvement in classification accuracy over
the conventional uniform-priors no-context
classification on thi= data set.

While this method can produce good es-
timates of the context distribution, it
suffers the limitation that a sufficient
number of blocks of ground truth of suffi-
cient size are needed to make an accurate
estimate of the context distribution. This
method cannot be used at all when blocks of
ground truth data are not available, while
the conditional probabilities can be esti-
mated from ground truth at random pixel lo-
cations.

Another possible method of estimating
the context distribution would be to base
the estimate on a uniform-priors no-context
classification. Such an estimate might
then be refined by basing a new estimate on
the context classification made using the
first context distribution estimate. The
estimates might even be iterated until the
estimate producing the most accurate clas-

sification over the training set is found.
(The final result should then be evaluated
on a test set disjoint from the training
set.)

Results from a straightforward imple-
mentation of this iterative "bootstrap” me-
thod were reported earlier in [2]. Esti-
mates of the context distribution were made
from counting the number of occurrences of
all possible class configurations in the
appropriate classification. While this me-
thod produced excellent results when simu-
lated data were used, results using real
Landsat data were disappointing.

It is thought that the no-context uni-
form-priors classifications of real Land-
sat data simply did not produce an accurate
enough classification for the "bootstrap"

method to work. The classifiction of the
simulated data was accurate enough because
the class-conditional probabilities p(X|8 )
were modeled exactly, whereas the class-
conditional probabilities were not modeled
exactly on the real data classifications.
This resulted in estimates of the context
distribution, G(SP), in the real data cases
that contained more spurious class configu-
ration counts than in the simulated case,
which in turn gave poorer context classifi-
cation results in the real data case.

There are several ways in which the
context distribution estimates from real
data no-context classifications could be
"cleaned up." One could employ a threshold
procedure which deletes all class configu-
rations with counts below a certain number.
Another approach would be to divide each
class configuration count by a fixed num-
ber and take the integer part of the re-
sult as the new count, deleting all class
configurations with counts that become
zero.

Yet another method for reducing the
effect of spurious class configuration cou-
nts is to raise each count to a power and
use the result as the context distribution
estimate. For powers greater than one, the
class configurations with larger counts are
favored even more heavily versus those with
relatively small counts in the discrimi-
nant function in Eg. 2. Conversely, for
powers less than one, the class configura-
tions with large counts are less heavily
favored. Going to the extreme of a power
of zero results in all class configurations
belng equally favored as in a uniform-

priors no-context econfiguration. agu44¢a4aiinyr

This power method was first tried on a
simulated data set to investigate the me-
thod's characteristics undisturbed by un-
known effects from inaccurate modeling in
the real data sets. This simulated data
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set [2] was generated from a very accurate
no-context classification of Landsat~1l data
from an urban area (Grand Rapids, Michigan).
A 50-pixel-square segment was used in the
tests. See Figure 1 for a summary of the
results. The results seem to indicate
that when the model is exact, as the power
used is increased (to a certain point), the
classification results tend towards the re-
sults obtained when the context distribu-
tion is estimated from ground truth. Also,
as expected, as the power used is decreased
below one, the results tend toward a uni-
form~priors no-context classification.

The power method was also used on a
50-pixel-square segment of Landsat data
containing approximately equal amounts of
urban and agricultural area located to the
southeast of Bloomington, Indiana. Statis-
tics for the spectral classes were estima-
ted using the 100-pixel-square area center-
ed on the 50-pixel-square segment. A very
careful uniform-priors no-context classifi-
cation using 14 spectral classes was per-
formed to delineate agricultural, urban and
forested areas. As there were too few fo-
rested pixels to delineate forest test a-
reas reliably, the classification was test-
ed only for accuracy in classifying the ag-
ricultural and urban classes. Out of the
2500 pixels in the segment, a total of 867
pixels were manually interpreted as agri-
culture and 450 pixels as urban. The iden-
tification was made by interpretation of
color infrared photography taken by air-
craft on the same day as the Landsat pass.

As mentioned earlier, a straightfor-
ward implementation of the iterative boot-
strap method of estimating the context dis-
tribution for this data set produced disap-~
pointing results. Whereas the no-context
uniform-priors classification had an over-
all accuracy of 83.1 percent and average-
by-class accuracy of 82.7 percent, the
best the bootstrap method could do in three
iterations was 85.3 percent overall accura-
cy and 84.8 percent average-by-class accu-
racy. The fourth iteration produced no
improvement.

Figure 2 summarizes the results using
the power method on two-nearest-neighbors
context (neighbors to the north and east)
based on an estimate of G(6P) from the no-
context uniform~priors classification.
Trading off overall accuracy against aver-
age~by-class accuracy, the best classifica-
tion was produced using a power of 5, for
which an overall accuracy of 87.0 percent
and average-by-class accuracy of 86.1 per-
cent was achieved. This nearly doubled
the accuracy improvement over the no-con-
text classification produced by the strai-
ght bootstrap method. Note also that the

results in Figure 2 follow the general tre-
nd of the simulated data results in Figure

A second iteration of estimating the
context distribution, G(6P), was then made
based on the classifications listed in Fi- >
gure 2. The second estimate of G(6P) based |
on the classification using the first esti-
mate raised to a power of 10 produced the -
best classification results with an overall
accuracy of 88.5 percent and an average—bg—
class accuracy of 87.5 percent (using G(8%)
raised to a power of 5). See Table 2 and
Figure 3 for a summary of results. This
second estimate of G(8P) gave a total 5.4
percent improvement in overall accuracy and
4.8 percent improvement in average-by~class
accuracy over the no-context classification.
Even though these improvements are not as
large as in the results using simulated da-
ta, or using the more restrictive method on
real data, these results are certainly en-
couraging.

Table 2
SECOND ITERATION POWER METHOD RESULTS

Best four nearest-neighbor classifications

with G(gp) based on the classification in

Figure 2.

Accurac %
Power Used b

Power Used in This Average-
in Fig. 2 Classification Overall by-Class

2 5 86.5 85.6

3 5 86.3 85.7

5 5 87.3 86.7

7 5 88.1 87.2

10 5 88.5 87.5

15 3 87.7 87.2

Prior to.making the second iteration
estimate of G(gp) above, it was assumed )
that the more accurateaclassification was,
the more accurate the estimate of G (6P)
from it would be. The results quoted here
show clearly that this is not always the
case. Further study is required before it
can be determined whether this type of be-
havior is typical, and before this behavior
can be exploited optimally.
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G(eP) estimated FIGURE 1. Power method results using as

from ground truth context one-nearest-neighbor (south) on
875 ¥ . 4 the simulated data set. Context distribu-
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FIGURE 2. Power method results using two-

nearest-neighbors (north and east) context
890 on Bloomlngton, IN data set. Context dis-
tribution, G(e ), estimated from uniform- .
priors no-context éistribution. é&%xoﬁrw»
885 .
875
880 1 ‘w8
w6 856
851
The number at each dot
“872 is the average - by -class
870+  “mo accuracy ( %corect).
865 FIGURE 3. Power method results using four-
nearest-neighbors context on Bloomlngton,
. IN data set. Context distribution, G(G )
860 R — R 4 cstimated from two-nearest neighbor (north
1 2 3 5 7 10 and east) context classification with con-

Power of Context Distribution Estimate text distribution raised to power 10.
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IV. PRACTICAL CONSIDERATIONS

The general approach to estimating the
context distribution, as suggested by the
results reported in the previous section,
can involve a large number of context clas-
sifications before the best estimate is
found. 1In addition to determining the best
power of the context distribution to use at
each iteration, the best p-context array
(how many and which neighbor (s) to use)
needs to be determined at each iteration.

The size and shape of the p-context
array directly affect computation cost and
classifiction accuracy. Generally, the
larger the p-context array, the higher the
computation cost. When the classification
from which the context configuration is
estimated is sufficiently accurate, larger
p-context arrays yield higher classifica-
tion accuracies. Less accurate template
classifications can result in cases where
d large p-context array will produce a
classification that is less accurate than
the no-context classification. Also, p-
context arrays of given size may produce
differing classification accuracies, de-

.pénding on the shapes of the arrays. It
would be desirable to be able to predict
the optimal size and shape of the p-con-
text array and the best power of the con-
text distribution to use at each iteration
before any actual classifications are
performed.

V. ESTIMATION OF OPTIMAL P-CONTEXT
ARRAY AND POWER

A theoretical measure of context has
been developed from the perspective of ap-
plying this measure to predicting the op-
timal p-context array. This same measure
may also be useful in estimating the best
power to use of the context distribution.

Suppose that the relative frequency
function G(6P) is such that it can be writ-
ten in factored form, i.e.,

c(6P) = G(_G_;_I) (g8 (3)
1| 2| 3
4 | 5 | 6
7|8 | 9

Fig. 4. Pixel locations used in testing AGg

q
where 21

p—-q vectors of classes.

and gg—q are, respectively, g and
The last element

of 8P7? is the same as the last element of
2
9?. If this factorization can indeed be

realized, Eq. 2 can be rewritten as T
m gi q ).
q
g (X.) =] L ... 1 p(x_|eo))e(sd)
k=13 g.=1 g =N\n=1 » 7/ 71
1 q
m m P
¥y ... ¥ nopx Je))ee?™ D | 4
£q+l— lp_l—l n=q+1 2

where Zp=k and the last element of gg—q is

Wy Since the term in the first set of

brackets is independent of k, it is just a
constant term that can be ignored when
classifying point (i,j). When such a fac-
torization as in Eq. 3 can be made, we can
reduce the size of the p-context array, re-
ducing computation cost with no loss in
classification accuracy.

If G(gp) can be factored as in Eq. 3,
it is clear that the distribution G(gP) is
one of independence for e% and eg'? This

suggests that a measure of nonredundant
contextual information from the pixel posi-
tions in gg as compared to that from the
pixel positions in _g—q would be a measure
of departure from independence for __(]:-f and
gg'q in the distribution G(QP). A possible
measure of this departure would be

m

m
2
aP= L ... L c(e9) G(ep'q)—c(ep)> (5)
q 1=1 2p=1 1 -2 -

where G(gg) and G(gg_q) are now the margi-
nals of G(g?). Other distributions of in-
dependence with marginal(;@g—q) and other

measures of departure from G(gp) could be ﬂ'
used. This particular form for AGP is at-
tractive because it is particularly easy !)

to calculate.

The "context measure" AGP can be used

to estimate the optimal p-context array in
the following way: Establish Qg'q as a

fixed core (p-g)-context array. Calculate

1980 Machine Processing of Remolety Sensed Data Symposium

176



the values of AGg for various g-context

arrays as gg, distinct from the core array.
1

The best p-context array for g? would be

9579 combined with the 67 that produced the
largest value for AGg. This, of course,
assumes that the contextual information
contributed by g% is not so erroneous that
it would actually decrease classification
accuracy. This may not be a reasonable
assumption in all cases.

The first test of AGg was made on the

simulated data with p=2 and g=1 and the
context distributions estimated from the

ground truth. The context arrays gi and g;
were defined with respect to the pixel lo-

cations defined in Figure 4. gl
2

was first

91 was va-
w1

fixed as pixel position 5 and

Table 3
AGg TESTED ON SIMULATED DATA WITH CONTEXT

DISTRIBUTIONS ESTIMATED FROM GROUND TRUTH

e1 gl Accuracy, %
1 T2 2 4
Pixel Pixel AG.x10 Average-

Location Location Overall by-class

8 5 5.09 92.7 74.0
2 5 4.99 91.6 73.5
4 5 4.90 91.7 71.8
6 5 4.90 91.7 73.9
7 5 3.42 90.8 71.2
3 5 3.31 90.4 69.8
9 5 3.26 90.6 79.6
1 5 3.19 90.6 70.1
7 1 2.58 90.3 68.6
3 1 2.27 90.2 70.3
8 1 1.98 89.4 67.9
6 1 1.87 90.4 70.2
9 1 1.53 89.9 69.5

Table 4
AGS TESTED ON SIMULATED DATA WITH CONTEXT
DISTRIBUTIONS ESTIMATED FROM UNIFORM-PRIORS

NO-CONTEXT CLASSIFICATION

Accuracy, %

el el
21 =2 2 5
Pixel Pixel AG,x10 Average-

location Location Overall by-Class

8 5 7.56 79.8 81.7
2 5 7.30 79.1 81.9
4 5 6.13 78.8 80.6
6 5 6.11 79.0 81.4
7 5 4.71 78.8 80.9
3 5 4.53 78.6 80.6
9 5 4.28 78.4 80.6
1 5 4.22 78.3 79.7
7 1 3.77 78.5 80.9
8 1 2.73 78.0 80.0
3 1 2.65 78.0 80.9
6 1 2.31  78.0 80.8
9 1 2.17 78.0 80.1

ried over the remaining positions. gé was

also later fixed as pixel position 1 with

gl varied over the pixel positions relative
t& position 1 not covered previously (i.e.,
positions 3, 6, 7, 8 and 9).

As can be seen in Table 3, AGg clearly

predicted that the best neighbor to use for
context would be any of the four nearest
neighbors (pixel positions 2, 4, 6 or 8 re-
lative to position 5). AgP did not so

clearly predict which nearest neighbor was
best.

AGE was again tested on the simulated

data, but this time with the context dis-
tributions estimated from the uniform-
priors no-context classification. As shown
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in Table 4, in this case AGE again tended

to predict the best p-context array. This

time AGf
the best neithboring pixel to use as con-
text while pixel position 2 came in as a
close second. These predictions held up
quite well when compared to the classifica-
tion accuracies. These distinctions among
the reamining pixels, however, weren't pre-
dicted as clearly.

predicted pixel position 8 to be

A test of AGg was also made using the

Bloomington, Indiana Landsat data with the
context distributions estimated from the
uniform-priors no-context classification

(see Table 5). Here AGS did not predict
the best p-context array as well as in the
simulated data case. AGg does correlate

positively with the accuracy results, but

the correlation is fairly weak. It seems

that the context here is too erroneous for
the predictor to function properly.

It was then checked to see if AGg cou~

1d be gsed to predict the power of the con-
text distribution to use for a particular

Table 5

AGg TESTED ON BLOOMINGTON, IND. LANDSAT DATA

SET. CONTEXT DISTRIBUTIONS ESTIMATED FROM

UNIFORM~-PRIORS NO-CONTEXT CLASSIFICATION

1 1 Accuracy, %
h 8,

Pixel Pixel AGixlO5 Average-
Location Location Overall by-Class
4 5 7.69 84.2 83.8
6 5 7.68 84.6 84.1
2 5 5.40 85.2 84.8
8 5 5.31 83.8 83.4
3 5 3.79 84.2 83.8
7 5 3.61 84.0 83.5
1 5 3.04 84.4 84.1
9 5 2,96 83.7 83.2

Table 6

AGg EVALUATED AS A PREDICTOR OF
BEST TEST DISTRIBUTION POWER ON
BLOOMINGTON, INDIANA, DATA TEXT

gf = pixel locations 26
1_ . .
22 = pixel location 5

Context distributions estimated from

uniform-priors no-context distribution

Accuracy, %

AG% Average-

Power Overall by-Class
.5 2.87x10”’ 84.4 84.0
.8 8.23x10"/ 84.9 84.4
1.0 2.05x10”° 85.0 84.5
1.2 4.81x107° 85.0 84.5
1.4 9.27x10”° 85.1 84.5
1.6 1.37x107° 85.2 84.5
2.0 1.34x10°° 85. 4 84.8
3.0 1.20x10°° 86.3 85.9
5.0 4.04x107° 87.0 86.1
7.0 1.98x10” 1 87.2 85.0
10.0 under flow 86.4 82.5

p-context array. gé

and gi was set as positions 2 and 6. The

was set as position 5

power used was varied as previously (see

Figure 2). [NOTE: G(gpf was normalized
for each value of « so as to remain a pro-
bability estimate. ]

In Table 6, AG3 shows a distinct pat-
tern of behavior as“the power of the con-
text distribution is varied. As the power
is increased fromone, AG, increases at
first and then decreages? 1In this case,
the power at which AG: falls to approxima-
tely its value in the“power of one case
corresponds closely to the power that
yields the highest classification accura-
cies. As the power is increased further,
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AG? decreases sharply. When the power is
increased to the value that produces the
classification that in turn produces the
best context distributioa estimate (in this
case, a power of 10), AGl is so small that

it can't be calculated in the precision
used.

Further investigation with this and
other data sets is needed to determine whe-
ther this is a universal pattern that can
be exploited in estimating the power of the
context distribution that yields the best
classification results. These results
make it seem unlikely, however, that AG
could be used to predict the power which
produces the best context distribution
estimate.

CONCLUDING REMARKS

The multispectral maximum likelihood
classifier has been extended to include
contextual information from arbitrary poi-
nts near, but not necessarily adjacent to,
the point being classified. The successful
application of this statistical context
classifier depends, however, upon the suc-
cessful estimation of the a priori context

distribution, G(ep). A method has been de-
veloped which can provide good estimates of
the context distributions assuming that
blocks of representative ground truth are
available.

Attempts at developing a more general
"bootstrap”" method of estimating the con-
text distribution have not yet been totally
successful. Encouraging results have been
obtained by using the power method describ-

ed in this paper. ¥Practical application of
these bootstrap methods is clouded by the
need to run several classifications to de-
termine the best p-context array and the
power of the context distribution to use at
each iteration.

A theoretical basis for an estimator
of the best p-context array has been deve-
loped. However, this estimator requires
that the contextual information be reason-
ably accurate, an assumption that does not
hold uniformly. Nevertheless, this same
estimator may yet hold promise with respect
to predicting the power of the context dis-
tribution which produces the most accurate
classification results.

It is quite possible that no reliable
estimation procedure simpler than actually
performing a contextual classification can
be found. If this is the case, the most ef-
fective way to "estimate" the best p-con-
text array and context distribution power
would be to perform contextual classifica-
tions on representative portions of the
scene before the total scene is classified
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