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I. ABSTRACT

In this paper a technique is developed in
order to numerically calculate the hypervolume
under a multidimensional Gaussian function over a
region of the space defined by an arbitrary hyper-
quadratic boundary. The technique is a modified
version of the technique developed by Fukunaga and
Krile.2 The latter technique can be used only if
the hyperquadratic boundary results from the
intersection of the Gaussian function, under which
the hypervolume is being calculated, with some
other Gaussian function as opposed to an arbitrary
hyperquadratic boundary.

A practical problem in which the hypervolume
calculation mentioned above is of interest arises
in statistical pattern classification involving
Gaussian classes. In this situation the Gaussian
function under consideration is actually a probab-
ility density function and the arbitrary hyper-
quadratic boundary results from the intersection
between two estimated distributions which parti-
tions the feature space into two disjoint decision
regions. For this case the hypervolume under the
probability density function of any class in the
region for which patterns are classified into that
class, is actually the probability of correctly
classifying vectors from the class.

The proposed technique has been successfully
implemented and it has proven to be quite efficient
and reasonably simple. Real data have been used
to demonstrate the applicability and efficiency of
the technique and to study the effect of estimation
on the value of the probability of correct classi-
fication.

II. INTRODUCTION

In statistical pattern classification it is
assumed that measurement vectors representing the
patterns from any particular class are random
vectors originating from some multivariate distri-
bution. In many situations a desirable objective
of a classification rule is to maximize the pro-
bability of correct classification. If the statis-
tical approach is utilized and it is assumed that
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the class-conditional distributions and prior class
probabilities are known to the classifier, then it
is logical to use Bayes' rulel which is known to
achieve the stated objective.

In '"real life™" pattern classification problems
the true class distributions are naturally never
known to the classification system designer but a
number of training patterns might be available
from each class. Under these circumstances, a
commonly used approach is to again use Bayes' rule
with the true class distributions replaced by their
estimates. In this paper the class distributions
are assumed to be Gaussian. For this case, in
general, the decision boundaries that result from
the above rule are hyperquadratic.

For our purpose it is essential to clearly
distinguish between the unknown true (underlying)
class-conditional distributions from which patterns
are assumed to arise and the estimated distributions
that are used in the classification rule. To
distinguish between these distributions the terms
true distributions and estimated distributions
respectively will be consistently used.

In situations where maximizing the probability
of correct classification is the objective it is
natural to use overall probability of correct
classification as a performance indicator for the
classifier. This probability can be obtained by
calculating the probability of correctly classi-
fying vectors from each class and then summing up
these probabilities after weighting each by its
prior probability. The class-conditional probab-
ility of correct classification for any class is
equal to the hypervolume under the true class-
conditional probability density function of this
class over the region for which patterns are class-
ified into this class. This region is delineated
by boundaries established by the classification
rule. 1In the modified Bayes' rule previously
described these boundaries are established by the
estimated distributions.

Obviously the volumes of interest can't be
calculated in any '"real life" classification pro-
blem since the true density functions are not
available. Consequently, the only possible way of
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obtaining some index of classifier performance is
to estimate each of these volumes. In practice,
this has typically been done by either classifying
additional test vectors from the true distributions
or by calculating the hypervolumes under the esti-
mated probability density functions. This latter
approach has been used by Fukunaga and Krile? and
Hallum3 both for two-class multivariate Gaussian
problems and by Mobasseri and McGillem® for multi-
class Gaussian problems.

It is of considerable interest to determine
the effect on the probability of correctly classi-
fying vectors from the true distributions caused by
using estimated rather than true distributions in
the classification rule. This problem can only be
studied theoretically since, as already noted, in
any "real life' classification problem the true
distributions are naturally not available. For
theoretical studies the true distributions are
assumed to be completely specified but in order to
simulate the "reallife' situation it is assumed that
these distributions can't be used by the classi-
fier. Consequently, as in the '"real life" case,

a number of training vectors generated according
to each true class distribution are available to
estimate the distribution for that class. The
estimated distributions are then used, identical
to the '"real life'" situation, in the classification
rule. In this theoretical framework, since the
true distributions are available, it is possible
(though it might be difficult) to calculate the
hypervolume under ‘each true class distribution
over the decision region associated with the
corresponding class.

For two-class Gaussian problems Fukunaga and
Krile have developed a technique to very accurate-
ly calculate the hypervolume under any Gaussian
distribution within a region defined by a specific
hyperquadratic decision boundary. The specific
hyperquadratic decision boundary results from the
intersection of the Gaussian distribution, under
which the hypervolume is being calculated, with any
other Gaussian density function. If the hyper-
quadratic decision boundary results from the inter-
section of two Gaussian density functions both
different from the class distribution under which
the hypervolume is being calculated (i.e. estimated
distributions), then Fukunaga's technique can't be
directly used., This paper describes how Fukunaga's
technique can be modified in order to numerically
calculate the required hypervolume. Utilizing
this modification, the true overall probability of
correct classification of a multivariate two-class
Gaussian problem can be calculated directly as
opposed to estimating this quantity using the
approaches previously mentioned.

In section III the proposed technique is
mathematically developed for the two-class Gaussian
Problem. In section IV a '‘real life" pattern

classification problem is considered in some
detail.

IIT. MATHEMATICAL DEVELOPMENT

For the two-class problem it is assumed that
patterns can arise from one of two classes Cj and
Cy of prior probabilities P; and P2. The two
class-conditional probability density functions are
assumed to be multivariate Gaussian with mean vec-
tors My and My and covariance matrices Ij and I3.
Since in any 'real 1ife' pattern classification
problem all the parameters are naturally unknown,
it is assumed here that the above parameters
including the priors are not available to the class-
ifier. It is also assumed that a number of train-
ing (design) vectors are available from each class.

Using the available design vectors, all the
unknown parameters are estimated and these esti-
mates are substituted into Bayes' classification
rule in place of the unknown true parameters. AS-
suming that ﬁi, ; and Ij are the estimates for
class Cj, the following classification rule results

A TA_l ~ ~ TA_l ~
(X-M) 2T (X-M)) - (X-My) 2T (X-M)
~ A A A~ C
+zn[121]/|zz|] - 2 [P, /P,] $ 0+XE{C; , (D

where X is an observation vector from either C; or
Cy. .This rule, in general, produces a hyperquadra-
tic decision boundary between the two classes.

This is true even for the special case in which the
true distributions have equal covariance matrices
(i.e. Z3=I3) unless this information is known to
the classifier a priori.

It is required to calculate the overall pro-
bability of correct classification Pgy resulting
from using rule (1). This probability can be
written as follows:

2

p_= z ppi) @
cr . iecr °
i=]1

where Pg%) is the probability of correctly classi-
fying vectors from the true distribution of class
C; using rule (1). This probability is equal to
the hypervolume under the true probability density
function of class Cj; over the region where vectors
are classified into this class by rule (1). As
previously mentioned, it is not possible to calcu-
late this hypervolume in any 'real life'" pattern
classification problem due to lack of knowledge of
the true densities. In fact it is very difficult
to calculate the hypervolume even in theoretical
studies (in which the true densities can be assumed
to be available) since direct calculation involves
a multivariate integration over a region with com-
plicated boundaries.

In order to simplify the analysis a new uni-
variate random variable is-introduced as

W) = (x-ﬁl)Tfil(x-ﬁl) - (x-ﬁz)TEEI(x-ﬁz)

s ml|5, 718,11 - 2B /8], @)
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where X, as defined before, is an observation vec-
tor from either C; or Cp. Consequently rule (1)
reduces to

W(X) S0 - Xe{cl . (4)
G2

In the course of the paper the two univariate ran-
dom variables Wy and W, will be used where

A ' .
W, = W(XlCi), i=1 or 2,
that is, Wj is the statistic W(X) given that ob-
servations arise from class Cj.

The two univariate random variables Wy and
W2, introduced above, contain all the information
about classes Cj and C; that is required for
classification purposes. Assuming that the den-
sity function% gf thes two random variables can
be derived, Pgy’ and Peg’/ can be respectively
determined by 1ntegrat1ng the density function of
W1 between -» and zero and the density function of
W, between zero and +°. Thus each of the compli-
cated multivariate integrals, mentioned before, is
now replaced by a simple univariate integration
which can be easily evaluated numerically.

Since deriving the density function of Wi or
W when classification is based on estimated dis-
tributions is generally difficult, simplifying
assumptions have been in the past considered.
Thus observations have been assumed to have come
- from the estimated distribution (as opposed to the
true distribution) of either C; or C;. In other
words, the probability of correctly classifying
vectors from the estimated distributions is cal-
culated and used as an estimate for the true value
of this probability. For this approach, a techni-
que has been developed by Fukunaga and Krile? to
numerically calculate this quantity. This same
technique can be also used to calculate the true
probability if the true parameters are known to
the classifier. Since the technique developed here
is presented as an extension of Fukunaga's techni-
que, this technique is briefly described.

The first step in Fukunaga's technique is to
simultanequsly djagonalize the two estimated
matrices I; and Iy by applying a nonsingular linear
transformation to the observations. This trans-
formation substantially simplifies the calculations
and in the same time it does not affect how pat-
terns are classified by rule (1) or (4) and con-
sequently does not affect the value of P ..

The direct derivation of the probability den-
sity function of Wy or W is very difficult.
Fukunaga's technique avoids the direct derivation
of the densities of Wy and Wy by utilizing instead
their more easily derived characteristic functions.
To calculate the probability of correct classifi-
cation a basic transform theorem for integrals
enables the necessary areas under the densities of
W) and Wy to be calculated by performing a suitable
integration of the characteristic functions. By

this approach the probability of correct classifi-
cation can be expressed in terms of two univariate
integrals of reasonably well behaved functions.
The above steps will be further clarified in the
course of development of the technique proposed in
this paper.

In this paper it is required to calculate the
true probabilities of correct classification,
i.e. the hypervolumes under the true densities.
In other words in rule (1) or (4) X is assumed to
arise from one of the true distributions. Thus
simplifying Wi (or W;) might seem to require the
diagonalization of Iy, .Z; and Z1 (or I,) which is
now the covariance matrix of X. This diagonaliza-
tion is not possible since only two matrices can
be simultaneously diagonalized. In order to re-
solve this difficulty, W(X) is first written in the
following form.

W) = xT(fil

a-1 ATA-1 ~Ta-1
S X - 2(M I M0 ) X

/\T/\_ 1 ~ ATA_ 1 ~ A ~ ~ A
+ {MZM M T M2+zn[|zl|/122|] - 2%n[P /P, ]}
= XTAX - 2b7X + 4, (5)

where X is from the true distribution of either C;
or Cy with

A= ﬁ;l-ﬁél , (6a)
b = §;1ﬁ1-§51ﬁ2, (6b)
d = WA -2, +anl |2 171811

-2£n[§1/ﬁz]. (6¢)

In the following analysis only class Cj is
considered since class C; can be similarily con-
sidered. From (5) it is obvious that simplifying
W1(X) in its functional form requires diagonalizing
only two matrices; Zj and A. Since neither Zj nor
fz needs to be diagonalized, Z} and A (di.e. Zil -

fil) are simultaneously diagonalized such that

$]Z6, =1  and

where A
elements X{

T, = A(D
o1a, = A, &

13 a Tgonal matrix whose diagonal
A(l , A{1) are the eigenvalues

of the matrix (leA) and the ith column of ¢ is an
eigenvector corresponding to Ail), normalized to
make ¢121¢1 a unit matrix. In order to further
simplify the calculations, a transformation is
first applied such that the origin is at Mj. Thus
as a consequence of these two transformations a
new variable Y arises where

= 61 (X-M)). (8
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Also b and d of (6) are likewise transformed by the
same transformation into E(1) and d(1) as follows

e

o1 BT M) - E3hc,m ), (92)
a1 . (ﬁl-Ml)Tgilcﬁl_Ml) - (ﬁz-Ml)Tigl(ﬁz-Ml)

- m[|A |1 - 2[R /P, ]. (9b)

Thus substituting into (5) with XeC;, Wj can be
written as a function of Y as

N
- (1) 2 (1) 1)
Wo(Y) = i=1{>\i y; - 2E; yi} +d (10)

where A{lj and Egl) are the ith components of A
and (1) respectively.

Thus Wy (Y) is now expressed in terms of inde-
pendent Gaussian random variables y; each of which
has zero mean and unit variance for YeC;. Follow-
ing Fukunaga's approach the characteristic function
of Wi (Y) in (10) is obtained and consequently pl
is expressed in the form of a univarigte inte-
gral of this characteristic function.

The same steps can be exactly repeated for
class Cy and ng) can be expressed in the same way

as P(l). Thus P(i), i =1 or 2, can be written as
cr cr

follows
. R ® F.(w)
pg;) =3+ (¥t 2s L sin(6, (4)) du
‘ (11)
where
N i) 2,,-1/4
Foa) = [ 7 (e w?yy”
1 s ]
. j=1
N 2(E..w)2
. exp-[ I ——”—(.-———2] (12a)
521 1 + By
j
and
N AD e 2 .
o) = [ 3 i q(yy
j=1 1+(2A§1)w)
1 3 -1, (i)
-7 I otan M. (12b)
j=1

Using numerical integration on (11), the two
Probabilities of correct classification can be de-
termined for each combination of the true and esti-
mated parameters. As has been mentioned in 2, the
number of sampling points required for convergence
Of‘thg integrals in (11) are relatively small
eSpeqlally for higher dimensionality.

. It is important to mention that the proposed
echnique can, in general, be used to numerically
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calculate the hypervolume under any Gaussian func-
tion (not necessarily a probability density func-
tion) over a region defined by an arbitrary hyper-
quadratic decision boundary.

IV. EXPERIMENTAL RESULTS

In order to demonstrate the applicability of
the proposed technique, a simulation study was
carried out on a real set of data. This set of
data was the result of eight tests, where each
test gives rise to one feature, performed by Marill
and Green® on the hand-printed letters A, B, C and
D. Using 200 training vectors for each letter
and assuming that each group of 200 vectors had
arisen from some 8-dimensional Gaussian distribu-
tion, they estimated the mean vector and covariance
matrix of each of these classes (i.e. the letters).

In order to simulate the '"real life" situatiom
and noting that the design sample size for each
class was quite large, the above estimated para-
meters for each class were considered as the true
parameters of an 8-dimensional Gaussian distribu-
tion. For the rest of the paper these parameters
will be consistently refered to as the true para-
meters. To simulate the '"real life' situation,
however, these distributions are assumed to be
unknown to the classifier. Consequently in order
to apply the classification rule, it is required to
obtain estimates for these parameters for use in
the classification process. This can be achieved
by generating a number of training vectors accord-
ing to each class distribution.

Since only two-class problems are investigated,
the four classes were considered in a pairwise
fashion. In order to simplify the results, it
was decided to consider only two of these pairs of
classes; the least and most separable pairs. To
choose these two pairs the following steps were
carried out. Each pair of covariance matrices
were first simultaneously diagonalized to simplify
the succeeding calculations. The features of each
pair were then processed and ordered according to
their effectiveness in discriminating between the
two classes in that pair. The probability of
correct classification was chosen as-the measure of
effectiveness for the different features. This-
choice is prefered to some '"distance' measures
since none of the known distance measures (e.g. the
Divergence or the Bhattacharyya distance) is
uniquely or monotonically related to the probabil-
ity of correct classification. Thus the best
feature, according to the above measure, was
selected. Then considering this selected feature
with each of the remaining features, the second
best was thus selected. This process was then
repeated until all features were considered. Note
that a selected subset of some specified size is
not necessarily the best subset of this size.

From this analysis the least separable pair of
classes was chosen to be that pair which resulted
the smallest probability of correct classification,
for only one feature. The two letters comprising
this pair were the letters B and D which intuitive-
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ly seems reasonable. Similarily the most separable
pair was defined. The two letters comprising this
pair were the letters C and D which again seem to
agree with intuition. The above two pairs will be
consistently refered to as pair B-D and pair C-D
respectively.

For pair B-D a nonsingular linear transforma-
tion was applied to the observations such that the
covariance matrix for the letter .B is the identity
matrix and the covariance matrix for the letter D
(Zp) is diagonal. The elements of Ip and the
absolute value of the transformed difference-of-
mean vector Bp are shown, ordered as explained
before, in Table 1. The corresponding parameters
for pair C-D are shown in Table 2. Note that in
both tables the numbers in brackets represent the
original indexes of the features as given by Marill
and Green.

The purpose now is to study the effect on the
probability of correct classification of using
estimated class distributions in the classification
process. To achieve this purpose it is assumed
that the true distributions are not known by the
classifier but a number of training vectors K are
generated according to each of the class distribu-
tions. These vectors are then used to estimate
the true parameters to be used in classifying
unlabelled vectors. Two types of experiments for
studying the effect of dimensionality on P,y have
been performed on the data shown in Tables 1 and 2.
In the first experiment, a fixed number of vectors
was used for parameter estimation for each dimen-
sionality N. This situation simulates the 'real
life" situation in which a fixed number of design
vectors are available with the freedom of choosing
the number of features to be used. In the second
experiment the number of training vectors is
assumed to be functionally related to the dimen-
sionality N as follows

K = oN,
where o is an integer constant larger than one.

In the two experiments mentioned above the
probability of correct classification for a parti-
cular design sample is a random variable simply
because this sample is randomly generated. Since
the intention is to study the effect of estimation
in general regardless of the design sample used to
estimate the parameters, it is necessary to average
this probability over all possible design samples
of the same size. The particular results present-
ed were based on averaging the calculated value
of P., over one hundred samples for each value of
K and each value of N. This gave rise to relative-
ly small statistical fluctuations in the results
for all cases. Consequently the relationship
between the average probability of correct classi-
fication P.y and N was obtained with K used as a
parameter in the first experiment and with o used
as a parameter in the second experiment.

The results of experiment 1 are shown in
Figs. la'and 2a for pairs B-D and C-D respectively.

The values of K considered were 5, 10, 20, 40 and
infinity (known parameters case). Since for pair
C-D the values of P,y for k = 20 or 40 were very
close to the known parameters case, these cases
are not shown on the graphs. For experiment 2 the
results are shown in Figs. 1b and 2b for the two
pairs. The values of o considered were 2, 5, 10
and infinity. Again for pair C-D the case 0=10
was not plotted for the same reason mentioned
above. To give a rough idea about the efficiency
of the proposed technique, it is important to
mention that it took less than 90 seconds on the
Dec system 2050 machine to calculate the average
probability of correct classification (over 100
samples) for any K and for any N between 1 and 8.

From the above results it can be concluded
that the proposed technique is quite efficient.
From the results of experiment 1 it is noted, as
expected, that peaking is always encountered in the
P.y versus N relationship for any finite sample
size. For the second experiment, however, since K
is increasing with N, peaking generally does not
occur. This latter result suggests that in order
to obtain good estimates for the covariance
matrices, and consequently minimize the effect of
estimation on P.,, it 1s necessary that at least
10N design vectors are available from each class.
If the number of design vectors is proportional
to N (i.e. equal to oN where o is aconstant larger
than one but not necessarily larger than 10), then
peaking might be avoided but still the performance
could be far from the case of infinite sample size.

V. SUMMARY

In this paper a technique has been developed
to numerically calculate, as opposed to estimating,
the true probability of correct classification for
the two-class multivariate Gaussian problem wherein
classification is based on estimated parameters.
This technique in essence represents an extension
of Fukunaga's technique which can be directly used
only if classification is based on the true distri-
butions.

In the proposed technique, as in Fukunaga's
technique for the special case mentioned above,
each class probability of correct classification
is expressed in terms of a univariate integration
of a simple and reasonably well behaved function.
Thus the true overall probability of correct
classification is obtained by performing two
univariate integrations that can be numerically
evaluated.

The proposed technique has been successfully
implemented and it has proven to be quite efficient
and reasonably simple. Real data have been used
to demonstrate the applicability and efficiency of
the technique. From the results obtained on the
data, it has been noted that unless enough design
vectors per feature are available to estimate the
parameters, peaking is always encountered especia-
1ly if the features are ordered according to their
classification power.
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- Ordered Transformed Parameters for Pair B-D.

Table 1.
The covariance matrix for B is the identity
matrix, the covariance matrix for D (IZp) is
diagonal and up is the transformed difference-
of-mean vector.
Features 1(5) 2(7) 3(4) 4(8) 5(6) 6(1) 7(2) 8(3)
E;e’é‘;“ts 0.226 0.110 0.590 1.227 1.084 2.384 1.800 1.422
Elements g73 0.255 0.684 0.783 0.641 0.316 0.061 0.010
of h‘lDl
Table 2. Ordered Transformed Parameters for Pair C-D.
The covariance matrix for C is the identity
matrix, the covariance matrix for D (Zp) is
diagonal and up is the transformed difference-
of-mean vector.
Features 1(6) 2(8) 3(7) 4(1) 5(3) 6(5) 7(2) 8(4)
g;e‘gg"ts 0.203 0.012 0.025 17.277 5.158 1.244 7.839 1.616
E}e’i‘ﬁﬁs 2.569 0.072 0.414 5.869 3.716 1.369 0.190 0.506
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(a) Fl;ed number of design vectors. (b) Number of design vectors proportional to dimensionality.

s 1980 Machine Processing of Remotely Sensed Data Symposium




5
a.
8
£ 1.0 2 —
S S ol —~
= o— — o ~oo -
wn ~ o
2 0.9 AN
] ~
5 A
g °%7 \ INFINITE DESIGN VECTORS/CLASS
S \ —~—— 10  DESIGN VECTORS/CLASS
© \ —_— 5 DESIGN VECTORS/CLASS
w 0.7 1
° \
= S
J o6
2 | )
S \
(o]
& o5 T T T T 2l T T T
0 | 2 3 4 5 5 7 8

DIMENSIONALITY N

PROBABILITY OF CORRECT CLASSIFICATION Pg
o
1

0.9 -

——— INFINITE DESIGN VECTORS/CLASS
0.7 - -_— 5N DESIGN VECTORS/CLASS
_—— 2N DESIGN VECTORS/CLASS

0.6 o

T ¥
0 | 2 3 4 5 6 7 8

DIMENSIONALITY N

Figure 2. Average Classification Accuracy (Pair C-D).
(a) Fixed number of design vectors. (b) Number of design vectors proportional to dimensionality.

1980 Machine Processing of Remotely Sensed Data Symposium
301




Arthur Wacker received his B.Sc. from
Queens University in 1955, his M.Sc. from the
University of Saskatchewan in 1962 and his Ph.D.
from Purdue University in 1972, Following some
industrial experience with Northern Electric, he
joined the Department of Electrical Engineering
at the University of Saskatchewan in 1957, and
currently holds the rank of Professor. From
1967-1971, while on educational leave from the
University of Saskatchewan, he was associated
with Purdue University and its Laboratory for
Applications of Remote Sensing.

His research interests are in the area of
pattern recognition and picture processing,
particularly in relation to LANDSAT imagery and
cartography. He is amember of the Association of
Professional Engineers of Saskatchewan and of the
Institute of Electrical and Electronics Engineers.

Talaat S. El1-Sheikh was born in Tanta,
Egypt, in 1949. He received his B.Sc. degree
with distinction from the Department of Electri-
cal Engineering at Cairo University in 1971.
From 1971 to 1974 he was a Research and Teaching
Assistant in the same department. He obtained
his M.Sc. in Electrical Engineering in 1974.
Since 1975, while on educational leave from
Cairo University, he has been in Saskatoon,
Saskatchewan, Canada. He obtained his M.Sc. in
Computer Science from the Department of Computa-
tional Science, University of Saskatchewan in
1977. Since then he is a Ph.D. candidate in the
Department of Electrical Engineering.

His main areas of interest are pattern
recognition, statistical communications, and
computer networks.

1980 Machine Processing of Remotely Sensed Data Symposium
302




