Reprinted from

Seventh International Symposium

Machine Processing of

Remotely Sensed Data

with special emphasis on

Range, Forest and Wetlands Assessment

June 23 - 26, 1981

Proceedings

Purdue University
The Laboratory for Applications of Remote Sensing
West Lafayette, Indiana 47907 USA

Copyright © 1981

by Purdue Research Foundation, West Lafayette, Indiana 47907. All Rights Reserved.

This paper is provided for personal educational use only,
under permission from Purdue Research Foundation.

Purdue Research Foundation

LANDSAT CLASSIFICATION ACCURACY ASSESSMENT PROCEDURES: AN ACCOUNT OF A NATIONAL WORKING CONFERENCE

ROY A. MEAD

Virginia Polytechnic Institute and State University Blacksburg, Virginia

JOHN SZAJGIN

EROS Data Center Sioux Falls, South Dakota

I. ABSTRACT

A working conference was held in Sioux Falls, South Dakota November 12-14, 1980 dealing with Landsat classification Accuracy Assessment Procedures. Thirteen formal presentations were made on three general topics: (1) sampling procedures, (2) statistical analysis techniques, and (3) examples of projects which included accuracy assessment and the associated costs, logistical problems and value of the accuracy data to the remote sensing specialist and the resource manager. Nearly twenty conference attendees participated in two discussion sessions addressing various issues associated with accuracy assessment. This paper presents an account of the accomplishments of the conference.

II. INTRODUCTION

Since Landsat data first became available, many Landsat scenes have been digitally analyzed to classify land cover. These classifications are not without error and have been subject to close scrutiny by critics and potential users. However, methods for describing and quantifying classification errors have largely been developed on an ad hoc basis. Furthermore, the lack of standardized methods based on sound statistical theory has spurred many researchers to express concern. Thus, a conference addressing Landsat classification accuracy assessment procedures seemed appropriate.

Nearly 20 scientists from across the country, who had experience with Landsat classification accuracy assessment procedures, were invited to attend a 3-day working conference consisting of formal presentations as well as small-group discussions. Table 1 lists the formal presenters, their topic, and affiliation.

Table 1. Presenters, Topic, and Affiliation

Name: Andrew S. Benson Topic: Issues and Approaches

Affiliation: Remote Sensing Research Program

260 Space Sciences Lab University of California Berkeley, CA 94720

Name: Russell G. Congalton

Topic: Discrete Multivariate Techniques

Affiliation: 225 Cheatham Hall

Virginia Polytechnic Institute and

State University Blacksburg, VA 24061

Name: Mike Fleming

Topic: Sample Size Determination Affiliation: EROS Field Office

218 E Street

Anchorage, AK 99501

Name: Pat Gammon

Topic: Logistics and Costs

Affiliation: U.S. Geological Survey

P.O. Box 349 Suffolk, VA 23434

Name: David Linden

Topic: Cluster Sampling

Affiliation: BLM Branch of Remote Sensing

Building 50 D-234 Denver Federal Center Denver, CO 80225

Name: Roy Mead

Topic: Conference Moderator Affiliation: 225 Cheatham Hall

Virginia Polytechnic Institute and

State University Blacksburg, VA 24061

Name: Ross Nelson

Topic: Change Detection

Affiliation: Earth Resources Branch

Code 923 NASA/GSFC

Greenbelt, MD 20771

Table 1. (continued)

Name: Charles E. Olson, Jr.

Topic: A Proposed Test Site for Accuracy

Assessment

Affiliation: 510 Dana Bldg.

University of Michigan Ann Arbor, MI 48109

Name: George H. Rosenfield

Topic: Analyzing Thematic Map Accuracy

Affiliation: U.S. Geological Survey

MS 710 National Center Reston, VA 22092

Name: Mark Shasby Topic: A Case Study

Affiliation: Applications Branch EROS Data Center Sioux Falls, SD 57198

Name: John Szajgin Topic: Double Sampling

Affiliation: Applications Branch EROS Data Center

Sioux Falls, SD 57198

Thirteen formal presentations were made on four general topics: (1) sampling procedures, (2) statistical analysis techniques, (3) the associated costs and logistical problems, and (4) the value of the accuracy data to the remote sensing specialist and the resource manager. The conference was held at the Earth Resources Observation System (EROS) Data Center, Sioux Falls, S.D., on November 12-14, 1980. The conference focused on the following objectives:

- Determine the state-of-the-art of accuracy assessment procedures.
- 2. Provide a forum for exchange of ideas.
- Identify research needs and recommend the approaches that should be taken to improve accuracy assessment procedures.
- Publish a comprehensive proceedings of the conference and prepare a paper summarizing the discussions.

The first three objectives were accomplished during the conference. Preparation of the conference proceedings is currently underway, and this paper summarizes the major points of discussion.

It is difficult to summarize the full content of the discussions which took place. The intent is to highlight the issues and ideas which were repeatedly raised or which generated considerable enthusiasm. A concensus was not necessarily reached on the items which follow. In some cases the point or issue is briefly identified, and in others, more complete explanations are given.

III. DISCUSSION TOPICS

- Topographic mapping procedures include routine evaluations for compliance with welldefined accuracy standards, and the accuracy attainable under specific conditions (terrain characteristics, mapping equipment used, and type of aerial photographs) are well known. However, national standards for reporting thematic map accuracy (such as those produced from digital classification of Landsat data) have not been established. Potential users of Landsat classifications often do not know the relative accuracies that are achievable in identifying various land cover types. These relative accuracies have not been fully determined. Furthermore, no government agency is known to have published standards for expressing accuracy. Such standards should be established, and contractors should be required to utilize them. Standard methods for reporting accuracy will become more vital as these classifications become inputs for geobased information systems.
- There are two major types of accuracy assessment procedures: site-specific and nonsite-specific. Non-site-specific accuracy is usually expressed as the similarity between the total number of acres in each land cover type as determined by a Landsat classification compared to the corresponding acreage determined from measurements in the field or from photointerpretations. The non-site-specific method compares only total acreages without regard to location. Site-specific accuracy, however, considers the spatial nature of the data. That is, two spatially defined data sets (one being "ground truth") are registered and compared for the amount of agreement. Such comparisons can be made on a polygon, grid cell, or point basis. These comparisons result in a matrix showing the quantity of omission and commission errors. If properly conducted, the site-specific approach provides a more rigorous and more informative appraisal of a map product. This approach may not be warranted when spatial arrangements are not critical. For example, when only acreage proportions by type are of principal concern.
- Landsat classification accuracy assessments are often made with very inadequate reference data (that is, maps, photo-interpretations, or actual visits to the field). These reference data should be distributed throughout the scene in such a way that all cover types, as well as zones of transition between the various cover types, are adequately represented. Furthermore, the time of reference data acquisition is an important consideration.

The use of training set data for accuracy assessment results in a biased and usually inflated estimate of accuracy. The amount of bias depends upon how well the training data represent the variability present in the scene. In some cases, this approach may be adequate for making intermediate estimates to aid in the classification process. However, final evaluation

of classification accuracy should be accomplished using an independent sample.

The cost of an independent accuracy assessment can be minimized by collecting the necessary accuracy assessment data simultaneously with the training data. The data should be set aside during the classification process and used later to provide an independent estimate of accuracy. In this way, all necessary field data are collected during a single field effort.

When interpretations from aerial photographs are used as reference data in assessing classification accuracy, the photo-interpretation may not be perfect. Therefore, ground data may be necessary to verify the adequacy of the photo-interpretation data.

- When error matrices are developed between classification results and reference data, consideration must be given to the means for selecting the sample. Factors, such as the number of categories classified, the proportion of pixels assigned to each category, and the spatial diversity of the landscape, interact and affect decisions concerning sample size and method of allocation. Also, the cost of field data collection, the rigor of the accuracy evaluation desired, and the relative importance of each land cover class impact the entire process.
- Numerous statistical techniques need to be evaluated for their utility in analysis of accuracy data. Those particularly well suited for this type of data should be identified, and their application to this work documented.
- One should not lose track of the difference between the usefulness of a specific product and its estimated accuracy. A quantitative accuracy assessment results in a numerical summary which may or may not represent the usefulness of the product or how well it compares with map products which were previously available.
- Further research is needed to determine the most appropriate sample designs for assessing the accuracy of classification results for landscapes of varying spatial diversity. In this regard, the advantages and disadvantages of cluster sampling should be investigated.
- A list of computer programs presently available for sampling classification results for assessing accuracy should be compiled. Development of additional computer programs may be needed to facilitate rapid accuracy assessments.
- There was a general concensus among those participating in the conference that the costs and logistics required for conducting accuracy assessments are often prohibitive. Better estimates of these factors need to be published, and faster, less expensive methods that suit user requirements should be developed.

• Given the current level of knowledge, a general set of accuracy assessment guidelines should be written. These guidelines should be flexible because of the wide range of circumstances associated with the varying objectives of classification. For this reason, several authors would be needed to adequately document the many diverse aspects of assessing classification accuracy.

IV. SUMMARY

Many issues were discussed and debated by conference participants. Topics for further research were identified, and major topics of discussion were summarized. A comprehensive report on the proceedings is being prepared in which state-of-the-art accuracy assessment procedures will be documented.

The participants recommended that a working group be established to write a manual or "guide book" on accuracy assessment procedures. This group could possibly be an ad hoc committee within the American Society of Photogrammetry.

AUTHOR BIOGRAPHICAL DATA

Roy A. Mead. A native of Niles, Michigan, Dr. Mead received a B.S. in Botany from Northern Arizona State University, an M.S. in Remote Sensing from Colorado State University, and a Ph.D. in Remote Sensing from the University of Minnesota. Currently, Dr. Mead is an Assistant Professor in the Department of Forestry at Virginia Polytechnic Institute & State University. His research interests include Landsat data classification accuracy and interpretation of aerial photographs. Dr. Mead is an active member of American Society of Photogrammetry and Society of American Foresters.

John Szajgin. John Szajgin is an Applications Scientist, Resource Assessment in the Applications Branch of the USGS EROS Data Center. His principal responsibilities include consultation and support to staff scientists in the areas of statistics and computer processing with particular emphasis on survey sampling design using remotely sensed data. Mr. Szajgin graduated from the University of Massachusetts with a B.S. in Forestry in 1978. He received an M.S. in Forestry from the University of New Hampshire in 1980. He is a member of the Society of American Foresters, American Society of Photogrammetry, International Society of Tropical Foresters, and Xi Sigma Pi.