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I. ABSTRACT

Wetland management needs include re-
quirements for both overall wetland plan-
ning and management by local, state, re-
gional and national agencies and internal
management of large wetlands. Landsat dig-
ital data can potentially supply manage-
ment information such as location, area,
wetland type, seasonal extent of surface
inundation, changes in vegetative composi-
tion and thus wildlife habitat potential,
impact of construction or water-level con-
trol, and information for wetland evalua-
tion. However, at present (1981), Landsat
classification accuracies for wetland type
or vegetation are often as low as 70 per-
cent. These generally unsatisfactory re-
sults are due to Landsat resolution, spec-
tral and spatial heterogeneity of wetlands
and vegetative communities, spectral over-
lap with nonwetlands, and inherent prob-
lems of boundary pixels and pixel correla-
tion. Better accuracies are needed for
wetland management. Improvement might be
obtained through prestratification of
data, use of disparate data sets, more ef-
ficient use of temporal data, and devel-
opment of classification categories which
can be duplicated from one date to the
next.

I1. INTRODUCTION

Many investigators use Landsat Multi-
spectral Scanner (MSS) digital data ragher
than imagery in order to make more effi-
cient use of multiple images (temporal da-
ta) to derive quantitative interpretations
and tabular statistical information, and
to integrate Landsat with geographic in-
formation systems. Landsat digital data
have been used to map and classify wet-
lands,2222%228,1253 t5 pap wetland vege-
tation,'*’!®s2% 5 and, in a few cases to
look at the hydrology of wetlands using
classification maps (classified images)

in conjunction with hydrologic informa-
tion collected in the field.2"*:!'7 Where
classification accuracies were evaluated,
they were often low (around 70 percent).
Some scientists have attempted to combine
Landsat digital data with collateral in-
formation such as soil type to improve
these accuracies!® Landsat data have also
been successfully combined with Seasat
radar to improve classification accura-
cies.??®

The objectives of this paper are: (1)
to discuss wetland management needs and
considerations in the context of informa-
tion that might be supplied by Landsat
digital data; (2) to examine the accuracy
of recent Landsat wetland classification
analyses; (3) to discuss some possible
reasons for the limitations of the Landsat
data; and (4) to suggest methods whereby
Landsat data might be more useful to the
wetland manager.

IITI. WETLAND MANAGEMENT NEEDS

Information requirements for wetland
management decisions can be divided into
two broad categories: (1) overall wetland
planning and management needs of local,
state, regional and national agencies, and
(2) requirements for internal management
of 1ar§e wetlands. Bartlett and Klemas
(1980)° surveyed 44 federal, state and
university groups having either management
or data collection and information pro-
cessing responsibilities for tidal wet-
lands. Their findings covering informa-
tion needs, accuracy requirements and
present availability of data are probably
representative of all wetland management
agencies regardless of their location or
responsibilities. The U. S. Fish and
Wildlife Service (FWS) has also provided
us with valuable insights into wetland
management information needs as deter-
mined from the FWS National Wetliands
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Inventory User Data Base (W. 0. Wilen,
personal commun., 1981). Butera (1979)°
and Garrett and Carter (1977)° have also
considered the wetland management require-
ments of federal agencies. Requirements
for internal wetland management are gen-
erally more specific but similar to over-
all management considerations.

A. OVERALL WETLAND MANAGEMENT

In addition to general tabular sta-
tistics (for example, number of wetlands
per county), most managers, especially
those with regulatory responsibility, re-
quire spatially referenced data and spe-
cific information on wetland characteris-
tics. This information may include: (1)
areal extent of wetlands (by type), (2)
boundary delineation. (3) surrounding
land cover or land use, (4) areal extent
of selected plant species, (5) soil type,
and (6) standing biomass. A majority of
the wetlands in an area may be smaller
than 10 ha and minimum desireable accura-
cies for boundaries and location are less
than 100 m, generally in the range of
2-30 m. Repetitive coverage is frequently
desired for monitoring or change detectiom
Remote sensing has largely replaced ground
surveys for determining wetland location,
boundaries and area; other information re-
quired can frequently be extrapolated to
areal information from ground-based
samples.?®

B. INTERNAL MANAGEMENT NEEDS - THE
GREAT DISMAL SWAMP AS AN EXAMPLE

The Great Dismal Swamp is an 84,890
ha forested wetland situated on the
Virginia-North Carolina border. Most of
the swamp is presently a National Wild-
life Refuge under the management of the
U. S. Fish and Wildlife Service (FWS).

The chief responsibility of the refuge is
to protect and maintain the wetland
ecosystem.'® Management of the swamp
includes maintenance of habitat for rare
and endangered species; water conserva-
tion and management to control fires,
reduce subsidence and loss of organic
soils, and maintain hydrophytic vegetationy
improvement of habitat for game and non-
game species; and provision for public
access and education. The Great Dismal
Swamp has been severely disturbed by man;
fire, timbering and ditching have made it
a vegetatively diverse and hydrologically
complex environment. A network of roads
and accompanying ditches in varying states
of repair make access problematical and
the very dense understory limits off-road
visibility and travel. The only efficient
way of mapping vegetation, evaluating hab-
itat, and monitoring change is through the
use of remotely sensed data, either air-

craft or satellite.

Information requirements of refuge
managers which may possibly be met using
remote sensing include:

1. Identifying the geologic, hydrologic
and cultural setting of the swamp.

2. Mapping the swamp vegetation at scales
commensurate with refuge needs,

3. Determining the extent and duration of
surface flooding in the swamp during the
late winter and spring,

4. Monitoring the effects of active con-
trol of water levels, and

S. Monitoring changes in wildlife habitat
(vegetative cover) including relative
amounts of each vegetation type, extent of
edges (boundaries between vegetation types
and diversity.

Landsat images have already provided the
regional overview of the Great Dismal
Swamp by showing geologic setting, sur-
rounding land use, and surface drainage.’
Vegetation maps including understory and
canopy vegetation have been made at scales
of 1:100,000 and 1:24,000'°% using color
infrared (IR) aerial photographs. Repeti-
tive satellite coverage can provide infor-
mation on flooded areas; the satellite
cannot, however, detect flooding through
the evergreen canopy or understory during
the winter or early spring when the decid-
uous trees are leafless. Repetitive veg-
etation mapping and the ability to detect
change are required for monitoring the
effects of water regulation on flooding
duration and condition of vegetation, and
for detecting changes in wildlife habitat
potential. However, classification accu-
racy must be sufficiently good to use the
thematic maps for management purposes.

IV. CONSIDERATIONS FOR USE OF LANDSAT
DATA

Discussions with technology transfer
specialists at the National Aeronautics
and Space Administration (NASA) suggest
that the majority of state level resource
management agency personnel are unfamiliar
with Landsat digital data analyses. Once
familiarized and trained, a number of
state agencies, for example Michigan and
Maryland, have accepted Landsat digital
technology for such purposes as land cover
mapping, including wetlands. However,
technology transfer demonstration projects
conducted by NASA at no cost to the states
may- engender unrealistic expectations
without a cost/benefit analysis.?5’® The
issue of cost/benefit is at the heart of
any management decision to accept and use
Landsat digital data!’®’® although other
considerations, such as potential use of
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the data in digital information systems,
may influence this choice.l! All alterna-
tive methods such as use of aerial photo-
graphs, should be thoroughly examined.??®>

»2 The literature shows that Landsat
digital data can provide low (unit area)
cost information for small-scale, large
area inventories, (for example °’3} but
usually the total project cost must be
weighed against the information quality
before the decision to use Landsat is
made.

Certainly management objectives and
specific operational mandates must be
clearly identified before the utility of
Landsat technology to provide information
can be assessed. Sound management dic-
tates that only the information essential
to accomplish the quantified objectives
should be collected or generated. Opera-
tional requirements of timeliness and
accuracy, at least in relation to manpower
costs and budgetary constraints must be
met. Decisions to alter or modify an al-
ready established information system de-
pend on whether using Landsat digital data
is (1) sufficiently economical to offset
changeover and set-up costs including
personnel training, (2) requires fewer
personnel, (3) provides essential informa-
tion previously unobtainable by other
means, or (4) some combination of the
three. Risk avoidance makes acceptance of
a new technology rather slow. Occasional-
ly management objectives themselves may be
‘changed as a result of the availability of
new types of information.

V. RESULTS OF RECENT LANDSAT DIGITAL
CLASSIFICATIONS

There have been several papers pub-
lished recently which discuss wetland
classification accuracy resulting from the
digital analysis of Landsat images.!Zs!*,
10,28,19,5 Some of these results are dis-
cussed below in terms of (1) general wet-
land classes and (2) specific vegetation
classes within wetlands. Methods of de-
termining accuracy vary from one study to
another, with the least rigorous treat-
ment being accuracy assessments where
evaluated areas are identical to sites
used to ''train" the computer to recognize
spectral signatures. The most rigorous
treatment is the assessment of errors of
both omission and commission based on
random sampling techniques. These differ-
ences in accuracy assessment make strict
comparisons of accuracies impossible, but
general trends can be observed.

Studies that consider general wetland
classes include Finley and others (1981)12
Werth and Meyer (1981),2% and Ernst and

Hoffer (1981).'° An analysis of Texas
coastal wetlands'? showed that five cate-
gories of non-forested wetlands could be
delineated using manual interpretation of
Landsat images. Interpreters used
1:125,000- scale Landsat enlargements to
map wetland classes on the basis of shape,
texture, reflectance, and association with
adjoining environmental units. Similar,
but not identical classes were mapped us-
ing Landsat digital data. Manual Landsat
interpretation accuracies of 81 to 85 per-
cent were achieved for two marsh classes,
75 percent for tidal flats and 97 percent
for sea grass and algae flats. .The over-
all accuracy for all wetland units was
87.6 percent. Digital classification
accuracies of 65 percent were achieved for
all wetland categories combined. Misclas-
sification resulted from similarity 1n
spectral signature between grassland/
rangeland and marshes, between mangrove
wetland and forest, and between fallow
fields and tidal mudflats. The authors
suggested a combination_of manual and
computer-assisted techniques might
improve accuracies.

Ernst and Hoffer (1981)!° used a lay-

‘ered classifier algorithm which combined

soils and Landsat spectral data to gener-
ate a wetland classification. The classi-
fication accuracy based on spectral
characteristics alone was 71,7 percent
with the major problems being (1) inabil-~
ity to separate wetland hardwoods and
upland hardwoods, (2) confusion of shrub
wetlands with pastures or uPland scrub-
shrub, (3) confusion of conifers w;th
deep marsh or dark soil, and (4) mis-
classification of shallow marsh as winter
wheat. The layered classifier gave an
overall accuracy of 84.3 percent, allow-
ing upland hardwoods to be separated from
wetland hardwoods and conifers from dark
soils. The classification'of shrub or
emergent wetlands was not improved.

Werth and Meyer (1981)2% compared the
accuracy of manually igterpreted )
1:24,000- scale color infrared gerlal
photographs with digital analysis of
Landsat data for both wetland apd‘nonj
wetland classes. Landsat classification
was performed using different classifiers.
Using the same classes, the overall~
classification accuracy was 97.§ percent
for the aerial photointerpretation and
72 percent for single-date Landgat images
classified with a maximum 1ikelihood
classifier. The authors made no attempt
to suggest the reasons for Landsat mis-
classifications.

Considering within-wetland cla§§ifi—
cations, Gammon and others, (1981),
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working in the Great Dismal Swamp of
Virginia and North Carolina, reported that
digital classification accuracies for wet-
land vegetation classes were generally too
low to consider Landsat digital classifi-
cation adequate for either mapping or
management applications. Their Level II
classes based only on general canopy type
{(for example, deciduous forested wetlands)
were more accurate than their Level I
classes which were based on both canopy
species and understory types (for example, .
evergreen or deciduous understory). A \
February and an April image were used,
alone and in combination. The overall
classification accuracy estimated for each
image was: February, 61 percent correct,
April, 80 percent correct, February-April
(MSS bands 5 and 7), 60 percent correct;
and February-April (all MSS bands), 61
percent correct. The relatively high
accuracy for April was primarily the
result of grouping all the deciduous
classes into one overall broad-leaved
deciduows class rather than attempting to
split out understory characteristics. It
appeared in this study that the spectral
characteristics of the vegetation types
were too closely related or mixtures of
species within communities and on transi-
tion zones between vegetation communities
made digital separation of types very
difficult.

VI. LIMITATIONS OF LANDSAT DATA

Landsat digital data are subject to
several limitations which constrain their
present utility for providing information
for wetland resource management. It is
these factors in combination with the
aforementioned management censtraints
which determine Landsat digital data
acceptability. Systematic errors due to
sensor characteristics, minimum resolution
elements as related to the size and shape
of ground features, and the effects of
wetland heterogeneity are among the limit-
ing factors.28°13

A. RESOLUTION

Landsat resolution elements (pixels)
are 0.45 ha in size and not really ade-
quate for accurate location and identifi-
cation of small wetlands or small homo-
geneous vegetation cover types covering
less than 10 pixels (4 ha). The smaller
the feature of interest, the more prob-

- lems are encountered with boundary or
"mixed pixels". Crapper (1980)° has
considered the mixed pixel problem in
some detail. He overlaid a comparatively
regular polygon with a square grid and

demonstrated that there are more peri-

-meter cells than one might expect. The

grid cell area in his example was 1.13
percent of the total area and 45 percent
of the total cells were perimeter or
mixed pixel cells. Errors of commission
or omission occur at the boundary of the
unit depending upon whether the peri-
meter cells are included or excluded.
Crapper's formula gives the variance of
the area estimate. It shows relative
errors of one percent for areas of 132 ha,
S percent for areas of 15 ha and 10 per-
cent for areas of 6 ha. Billingsley
(1981)"* also notes that smaller fields
have fewer central or pure pixels and more
boundary pixels so that accuracies can be
expected to be low. Without a special
methodology for associating boundary
pixels with the main field, they may

be assigned by the computer to another
separate class, an error which is more
serious in the case of small wetlands.

B. SPATIAL AND SPECTRAL HETEROGENEITY
OF WETLANDS AND WETLAND VEGETATION

Wetland types are extremely variable
in terms of spectral characteristics; for
example, short, thick grass-like or broad-
leaved emergent wetlands, submersed vege-
tation in shallow water, deciduous and
evergreen shrub-scrub and forested wet-
lands have very different spectral signa-
tures. Vegetation diversity may be very
great within an individual wetland, and
phenology and water dynamics cause season-
al changes in wetland spectral signature.
Additionally, wetlands may be small or
large and, unlike most agricultural fields
may be linear, curvilinear or irregularly
shaped. Hixson and others (1980)!° pointed
out that for agricultural fields, the de-
velopment of representative training sta-
tistics is relatively more important for
accurate classification than the selec-
tion of a classification algorithm. This
would appear to be the case for wetlands.

Consider as an example vegetation
mapping in the Great Dismal Swamp with
Landsat digital data. Vegetation types
may have spectral homogeneity near their
stand centers and become progressively
mixed with other vegetation toward the
periphery; for example stands of pine,
Atlantic white cedar and the evergreen
shrub community intermix with deciduous
trees. Natural forest stands are common-
ly irregular in shape and variable in
size, and a continuous change in the
vegetation near the edges of a stand can
result in a series of mixed pixel classes.
The central or 'pure" pixels form one
class and the spectrally varying edges
form one or more adjacent classes.
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Figure 1 shows 4 classification maps for a
small area of the Great Dismal Swamp con-
taining two relatively large stands of
Atlantic white cedar. The stands have a
more uniform signature in February and are
composed of more spectral classes in April
because of the inclusion of leafed-out
deciduous trees in the stand. The combin-
ation of MSS bands 5 and 7 for the Febru-
ary and April images shows the strong in-
fluence of the February data and the Feb-
ruary/April image (8 MSS bands) suggests
that tempeoral data generates more spectral
classes.

In the case of deciduous hardwoods,
the wetland vegetation is often a complex
mixture of 10 or more species, continually
variable in terms of species dominance.
Figure 2 shows the April Landsat classifi-
cation of a deciduous area in the Dismal
Swamp and a section of the 1:100,000-
scale vegetation map for comparison pur-
poses. Note that the classifier has iden-
tified 15 separate deciduous classes in
this small area and we have found it
virtually impossible to assign an indiv-
idual class to a specific canopy type. If
a manager is interested in encouraging the
growth of oaks which provide mast for deer
and in discouraging maple which has less
value for wildlife forage, it is important
to have the capability to discriminate
between the two species. However, unless
phenological data are available, the mix-
ture of deciduous canopy species cannot be
gene;ally divided into classes based upon
species.

Campbell (1980)° has recently pointed
out that in supervised classification,
training sets are usually chosen to re-
present the ''pure'" part of a homogeneous
unit. However, a 64 pixel training set,
no matter how "pure" contains inherent
spectral variability and there appears to
be a tendency for correlation between the
values of adjacent pixels due to the
nature of the sensor and the method of
data collection (see also*). Estimates of
category variances, based upon values of
‘contiguous pixels, yield low values
relative to those based on random samples
of the same area. These biased estimates
may ultimately lead to errors in super-
vised classification. Hixson and others
(1980) reiterate the importance of obtain-
ing the best possible class statistics.
Campbell explains that there is a tendency
toward clustering of misclassified pixels
in space; a relatively uniform area may
contain misclassified pixels which will be
detected by accuracy assessment or give
the map a speckled appearance. It should
be noted, however, that Campbell did not
address the fact that such clusters within
other seemingly homogeneous types may, in
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fact, be true ground-based features in the
data set. These small clusters or inclu-
sions exhibit seasonal changes suggesting
that there may be certain phenological
influences generating the effect.

In an unsupervised classification,
the inherent variability in a homogeneous
vegetation unit combined with the tendency
for spatial autocorrelation of pixels may
result in classification of a forested
wetland vegetation type into one
reasonably homogeneous class with other
class inclusions of 15 pixels each. These
inclusions or the concentric classes
forming around the 'pure' center leave the
investigator with the subjective decision
as to whether classes should be combined
into larger, broader classes based upon
adjacency or upon closeness of spectral
statistics.

VII. TEMPORAL DATA: PROS AND CONS

Billingsly (1981)"* discusses in detail the
effects of band misregistration upon
multispectral classification accuracy.
Misregistration is only one of a group of
parameters (noise, class separability,
field size, spatial transient response)

which affect classification, Misregistra-
tion causes additional pixels in the field

boundaries to be misclassified due to the
mixture of materials in the pixels. As
long as geometric correction and registra-
tion are accurate only to about one pixel,
the potential for misregistration exists
when more than one image is overlaid. Re-
sampling in order to overlay the data from
two dates may also blur class boundaries.

The results of having twice as many
spectral bands do not always seem consis-
tent nor are they always explainable. In
an unsupervised classification, the in-
creased number of spectral classes makes
identifying and combining classes moredif-
ficult, expecially when some classes con-
sist of only a few pixels. The perceived
advantage of being able to combine classes
identifiable on different dates into one
class, for example deciduous shrub and
evergreen shrub into an overall shrub
class, is not always a reality with tempo-
ral data. In the Dismal Swamp study,
Gammon and others (1981)'* found that tem-
poral data did successfully recognize some
highly unusual classes or units of vegeta-
tion, but other vegetation units were more
accurately identified with individual )
Lgndsat dates. a
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VIII. HOW MIGHT LANDSAT BE MADE MORE
USEFUL TO WETLAND MANAGERS

Landsat digital data as a stand-
alone information source probably have
insufficient resolution and classifica-
tion accuracy to meet the information
requirements of most wetland management
groups with regulatory mandates. For
broad regional level (synoptic overview)
identification of wetlands larger than
5 ha, Landsat digital analyses can pro-
vide reasonably accurate data (approxi-
mately 70-75 percent accuracy). In
coastal areas, where wetland vegetation
is more spectrally homogeneous and spa-
tially extensive, accuracies may approach
80-85 percent. Problems will still exist
with identifying small wetlands or narrow
linear wetlands.

Limited data seem to indicate that
Landsat digital technology is still
unfamiliar to a significant number of
managers and there is a lack of realistic
cost data to compare techniques on wet-
land mapping tasks. Perhaps a clearer
understanding of the limitations of
Landsat data and Landsat technology in
general will help make Landsat a more
useful tool.

Improved resolution, both spectral
and spatial, will have to wait for the
launch of the Thematic Mapper and future
satellites. Meanwhile there are several
ways of approaching the data which may
improve accuracies substantially. These
include prestratification of data, better
use of temporal data, and the addition of
disparate data sets in a geobased infor-
mation system context. Digital data can
be prestratified a number of ways. Using
the Great Dismal Swamp as an example, one
approach may be to separate deciduous and
evergreen canopy first and then proceed
to break each class into separate classes
rather than starting with a large number
of unsupervised classes and combining
them. Based on stratification of one
image, a second geometrically registered
image could be manipulated. For example,
with a winter image, deciduous and ever-
green cover could be separated into two
large classes and possibly the evergreen
cover type could be further subdivided.
With a growing season image, the mixed
evergreen/deciduous classes and the
entirely deciduous classes should be
separable using the boundaries establish-
ed with the winter image. If other tem-
poral data are available, the deciduous
Class could be further segmented using

_bhenological information. This same

approach could be taken to locating and
identifying small wetlands in large

regions.

Disparate data sets may improve
classification accuracy in fairly unalter-
ed wetland environments. Just as Ernst
and Hoffer (1981)!° used soils as an ad-
ditional unit in their classification,
elevation, depth of organic soil, or
extent of flooding might aid in the sep-
aration of vegetation types in the Great
Dismal Swamp thus making better informa-
tion available to management.

In the area of monitoring, good
techniques to overlay sequential data are
essential. Development of realistic clas-
sification categories which can be dupli-
cated is necessary to make comparisons.
These categories should be defined by
the resource managers to ensure their
compatibility with management information
requirements.
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Figure 1: Landsat classification of Atlantic white cedar in the Great Dismal Swamp. The

April classification shows more spectral classes (<Q,+,
because of leaf-out of deciduous trees. The April/February classification shows more spec-

-) than the February onc ({,-)

tral classes (Q,+,-,*) than the April 57/February 57 one (see text for cxplanation of com-
binations of MSS bands) because use of 8 Landsat bands appears to introduce more spectral

variability.
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