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I. ABSTRACT

Through the comparison between temperatures
estimated from remotely sensed data and those
actually measured, we discuss causes of discrepancy
between them. We apply regression analysis to the
data and pay particular attention to regression co-
efficient which as a shole represents causes for
the error. The coefficient obtained by taking
ground truth data as independent variables and es~-
timated temperatures as dependent variables tends
to be less than 1. Atmospheric effect on the co-
efficient is studied, being based on a simple model
Vertical temperature profile, another possible
cause for the tendency, is also discussed on the
basis of laboratory experiments.

II. INTRODUCTION

Remotely sensed thermal infrared (IR) data
give us information about temperature of terrain
objects.] There are several Bapers dealing with
the estimation from the data.¢ The validity of the
technique is evaluated by goodness of the coinci-
dence between estimated and actually measured tem-
peratures. Some reported very good coincidence
such as within 0.1 C, and some poor one. We ex-
amined it for several causes by using regression
analysis. We point out causes for the discrepancy
between estimated and measured temperatures, and
pay particular attention to the regression co-
efficient which as a whole represents causes for
the error. The coefficient obtained by taking
ground truth data as independent variables and es-
timated temperatures as dependent variables has
tendency to be less than 1. We discuss the causes
for it by using an atmospheric model and laboratory
experiments.

IIT1. EXAMPLES OF COMPARISON
The thermal IR data for this study were ob-
tained by an airborne multispectral scanner
M?S-BG-I whose spectral band in thermal IR was 10.5
-12.5 um.

As ground truth were used bucket temperatures

because we need a lot of measurements for the
analysis, and radiometers for them are too ex-
pensive, and moreover the temperatures which we
really want to know seem to be closer to those ob-
tained by conventional method than to those by
radiometers.

We will show examples of the realtion between
ground truth and estimated temperatures. Fig. 1
{a) and {b) show the realtion for sea water. In
the figure the solid 1ine represents the Tine on
which both temperatures are equal, and the dotted
tine the regression line. -
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Fig. 1 Ground truth and estimated temperatures
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The results of this and some other cases are
summarized as follows:

(i} Correlation coefficients between remotely
sensed data and ground truth were very high, and
were very often statistically significant.

(i1) The inclination of regression line was
different from one case to another.

(iii) A tendency was seen that the inclination is
less than 1.

(iv) The coincidence in absolute temperature be-
tween estimated temperatures and ground truth was
not very good.

IV. CAUSES FOR DISCREPANCY

Causes for the discrepancy between the ground
truth and estimated temperature are considered as
follows: (1) Errors inciuded in the remotely
sensed data themselves. (2) Errors included in
ground truth. (3) Errors included in the process
to obtain the temperature estimate from remotely
sensed data. (4) Errors due to effects of at-
mosphere intervening between remote sensors and
terrain objects. (5) Errors due to relative
differences between remote sensing and ground
truth experiments (in other words, ground truth is
not necessarily "truth" from a stand point of re-
mote sensing.)

Systematic errors in (1) and (2) can be
eliminated by calibration. Item (3) includes
errors by linear interpolation, and estimation of
emissivity of objects or transmittance of atmos-
phere. Item (4) is discussed later.

Item (5) is broken down into (a) Saptial
difference: 1) Difference in positioning when
finding ground measuring points in thermal IR
images. 2) Difference in measuring area. A pixel
of the image covers some area. Ground truth is
usually obtained in a smaller area. 3) Vertical
profile: Thermal IR images represent only surface
temperatures. Ground truth data are generally
obtained under the surface. (b) Temporal
difference: To get an accurate coincidence in
time between remote sensing and ground truth is
almost impossible. (c) Difference of instruments:
Difference of system characteristics (for example,
observation spectral bands and dynamic charac-
teristics) between remote sensors and instruments
for ground truth may cause errors.

V. DISCUSSION
A. ATMOSPHERIC MODEL

By assuming that the relation between true
temperatures T(K) which ground truth is assumed
to represent and estimated temperature Ta is
linear within a narrow range of temperature, say
20° to 30°C, we will get the inclination of the
line dTa/dT from a model,

. The model we used is quite simple as shown
in Fig. 2. In this model atmosphere is described

Transmittance

as a thin layer at an effective temperature To and
with transmittance t and emissivity (1-1).

We approximate the radiant emittance from a
black body at T(K) by oTB (See Appendix). Let
the emissivity of a terrain object be ¢ (assumed
constant over the wave range considered). Then

oTaP = & 2(aT?) + (1-1) (aT0) (1)
Let
(1-r)ToB = c® = constant (2)
Eq. (1) can be rewritten as
Ta® = ¢ B+ P (3)
dTa/dT = ¢ (T/Ta)?! (4)
By using egs. (1), (3) and (4)
4T /dT = (e)V/B[1-(1-0) (To/Ta) )" V/8 - (5)
If we assume that To = Ta, then
dTa/dT = (ex) /8 (1°1/8 < 178, (6)

When T = To with ¢ = 1, it follows that Ta =T.
Therefore for the object such as water which

is regarded as black body, the regression line is

expected to be one shown by dotted line in Fig. 3.

B. LABORATORY EXPERIMENTS

We tried laboratory experiments using water
to know the relation between surface temperature
estimated from remotely sensed data and bulk tem-
perature obtained as bucket temperature. In the
experiments an infrared radiometer was used to get
the surface temperature, and a mercury thermometer
or thermocouples submerged into the water to get
bulk temperature.
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Fig. 2 Atmospheric model
Fig. 3 Ta versus T
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Figs. 4 and 5 show the temperature profile -
and the relation between surface and bulk tempera- x»
tures, respectively, when the water was stirred
(a), and allowed to stand (b). Fig. 6 shows the
effect of wind on surface temperature. The bulk 0
temperature was measured at about 15mm under the
water surface. Fig. 7 shows a temporal change in
the temperature of the surface without (a), (b) »
and with (c) oil slick since the wind started
blowing. - Fig. 8 shows the effect of illumination.
The i1lumination was done by an electric bulb
(500W) 50 cm above the surface. The temporal
changes of the temperature at the surface and at
15mm under the surface are shown. Fig. 9 shows
the effect of wind and oil slick on the water sur-
face temperature.
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Through the comparison between estimated tem-
peratures from thermal IR data and ground truth, of
we pointed out causes for the discrepancy between 2% (4
them, and discussed one of the problems by using [
an atmospheric model and laboratory experiments.
To determine T0 in the model and to examine re-

productibility of these results in various cases
are the subjects for the future study. The re-
sults shown above indicate that it is not meaning-
ful to pursue absolute and precise measurement of
temperature for terrain objects by means of remote
sensing. We have studied this problem to evaluate
the feasibility of the technique.
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APPENDIX

We approximate the radiant emittance from the
black body at T(K) by «TE. We determine the ex-
ponent factor for a narrow range of temperature by
regression analysis between log(t) and Tog[q(T)]
(Fig. 10), where T is the absolute temperature,

and q(T) is given by

A
am = [ v ma

A
and
N (T) = Cy A75 [exp(C/T)-11""
A 1 Pita :
The inclination of the regression line determines
the factor. Table 1 shows the factors for several

spectral bands and different shapes of filters
v(x), rectangular, sinusoidal and Butterworth.
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) Table 1 Exponent factors
Fig. 8 Effect of Illumination
Fig. 7 Temporal A B ¢
change of surface Wavelengt

tgmper‘ature due to {im _J_L
wind 8 -14 4.59 4.52 4.57
9.5-12 4,56 4,54 4.58

10.5-12.5 4,27 4,26 4.27

4.3- 5.5 | 9.64 9.71 9.65

4.5- 4.9 10.2 10,2 10,2

2.1- 2.4 20.9 21.1 20.6
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