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ABSTRACT

Contextual classifiers are being
developed to exploit spatial/spectral con-
tent of a pixel to achieve higher classi-
fication accuracy. Contextual classifica-
tion requires large amounts of
computation, so special hardware is of
value. One parallel processing system
designed for image processing is the CDC
Flexible Processor Array, the basis for
the discussion in this paper. A simulator
for the CDC Flexible Processor Array has
been developed for program testing, debug-
ging and timing. The simulated timings
are presented in this paper. For compari-
son, the same algorithms have been run on
a PDP-11/70. These timings are analyzed
and discussed for context neighborhoods of
size thrée and nine.

I. INTRODUCTION

One way to approach spatial information in
image data is to recognize that the ground
cover associated with a given pixel, i.e.,
its "class" 1is not independent of the
classes of its neighboring pixels. Stated
in terms of a statistical classification
framework, there may be a better chance of
correctly classifying a given pixel if, in
addition to the spectral measurements
associated with the pixel itself, the mea-
surements and/or classifications of its
"neighbors" are considered as well. The
image can be considered to be a two-dimen-
sional random process and the characteris-
tics of this process incorporated into the
classification strategy. This 1is the
objective of "contextual classifiers"
(4,5] in which a form of compound decision
tY}eory is employed to improve scene clas-
sification through use of a statistical
characterization of context. These
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classifiers are an extension of an idea by
Welch and Salter[6].

Classification algorithms such as the
contextual classifier (and even much sim-
pler algorithms used for remote sensing
data analysis) typically require large
amounts of computation time. One way to
reduce the execution time of these tasks
is through the use of parallelism. Vari-
ous parallel processing systems that can
be used for remote sensing have been built
or proposed.

The CDC Flexible Processor system is
a commercially available multiprocessor
system which has been recommended for use
in remote sensing [1,2,3].

Section II briefly describes the con-
textual classifier and gives an algorithm
for performing it. Section III presents
uniprocessor classification algorithms.
Section IV presents the Flexible Processor
algorithm, a potential Flexible Processor
Array organization, and timings for the
contextual classifiers.

'II. CONTEXTUAL CLASSIFIERS

The image data to be classified are
assumed to be a two-dimensional I-by-J
array of multivariate pixels. Associated
with the pixel at "row i" and "column j"
is the _multivariate measurement n-vector
Xij e R and the true class of the pixel
8;5 € 0 = {wl,...,wc}. The measurements
hade class-conditional densities £(X|wy) s
k =1,2,...,C, and are assumed to be
class-conditionally independent. The
objective is to classify the pixels in the
array.

In order to incorporate contextual
information into the classification pro-
cess, when each pixel is to be classified,
p-1 of its neighbors are also examined.
This neighborhood, including the pixel to
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be classified, will be referred to as the
p-array. Intuitively, to «classify each
prixel, the contextual classifier computes
the probability of the given observed
pixel being in class k by also considering
the measurement vectors (values) observed
for the neighbor pixels in the p-array.
Specifically, for each pixel, for each
class in @, a discriminant function g is
calculated. The pixel is ascigned to the
class for which g is greatest. Each value

of g is computed as a weighted sum of the

product of probabilities based on the pix-
els in the neighborhood. This is
described below mathematically for pixel
(i,j) being in class w,. (The description
is followed by an exafiple to clarify the
notation wused. Further details may be
found in [4,5].)

P
= P
g X y) Y | morley Sy
gij e Q°, | 2=1
5 T 9
where
XoeX. . is the measurement vector from
1 the &th pixel in the p-array (for
pixel (i,3))
elegij is the class of the 2th pixel in

the p-array (for pixel (i,3)

f(leel) is the class-conditional density
of Xl given that the 2th pixel is
from“class el

6P(8,;:) = G (81,65,...,8,) is the a
J priori probabiligy of observing
the p-array 61,92,...,9p.

Within the p-array, the pixel loca-
tions may be numbered in any convenient
but fixed order. The joint probability
distribution GP is referred to as the con-
text distribution. The class-conditional
density of pixel measurement vector x
given that the pixel is from class k is:

£(xlk) = e-[1081 (2|2 [+Gem) s " em ) 172

where the measurement ector for each
pixel is of size n=4, I}~ is the inverse
covariance matrix for cféss k (four-by-
four matrix), my is the mean vector for
class k (size four vector), "T" indicates
the transpose, and "log" is the natural
logarithm. This is the same function as
used for maximum likelihood classifica-
tion[7].

Consider as an example the horizon-
tally linear neighborhood[4] shown in Fig.

i1, and assume there are two possible
classes: @ = {a,b}. Then the discriminant
function for class b is explicitly:

I (Xy5) = £(x;]a) £(X,]|b) £(X3]a)G(a,b,a)

+(f(xl|a)f(X2|b)f(X3|b)G(a,b,b)
+ £(X, [0) £(X,|b) £(X3]2)G(b,b,a)
+ f(xltb)f(leb)f(x3rb)c(b,b,b)

(Recall G(631,02,63) is the a priori prob-
ability of observing the specific neigh-
borhood configuration (631,62,03).) After
computing the discriminant functions of gg
and g, for pixel (i,j), pixel (i,j) is
assigned to the class which has the larger
discriminant wvalue.

Consider the case where there is a
non-linear three-by-three context array
(neighborhood), shown in Fig. 2, In gen-
eral, for each g there are CP™1 product
terms, each term having p+l factors, where
C is the number of <classes and p 1is the
neighborhood size. All of the calcula-
tions are done using floating point data.
It is the parallel implementation of con-
textual classifiers that is the subject of
this paper.

III. UNIPROCESSOR CONTEXTUAL CLASSIFIERS

The algorithm, shown in Fig. 3,
implements the contextual classifier. Let
"hold(m,k)" be a two-dimensional array of
size three-by-C, i.e., 0 <m<2andl <
k <C. For m=cr, hold(cr,k) 1is a vector
of length C containing the class-condi-
tional density values ("compf"s) for the
pixel (i,3j) ("cr" is an abbreviation for
center). For example, hold(cr,l) 1is the
class~conditional density for pixel (i,3)
and class 1. hold(lt,k) and hold(rt,k)
are the analogous vectors for the pixel
(i,3-1) (the left ("1t") neighbor) and
pixel (i,j+1) (the right ("rt") neighbor),
respectively. By using this array to save
the class~conditional densities, each den-
sity (for a given pixel and class) is cal-
culated only once.

To reduce the number of floating
point operations in "g'(lt,cr,rt,k)" for
the algorithm, the sum is updated only if
"G(r,k,q)" is non-zero. In the Landsat
data used in the testing described in [5],
the percentage of a priori probabilities
(G%s) that were non-zero was about 1%
(based on a size nine neighborhood and 14
classes). Thus, most of the G7s that are
stored are =zeroes. The memory require-
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ments of the classifier can be reduced
greatly if the zero values are ignored and
only the non-zero values stored. Assume
that each non-zero G value is a floating
point number requiring 32 bits. In
memory, alternate each non-zero G value
with a 16-bit word that specifies the
three classes associated with that class,
e.g., if G(3,3,2) 1is non-zero, the word
preceding it is a representation (conca-
tenation) of 3, 3, and 2. This would
allow |16/3] = 5 bits per pixel for speci-
fying the class, 1i.e., up to 32 classes.
This data compaction method would be use-
ful whenever more than one-third of the
G's are zero. Variations on this method
may be employed for larger neighborhhoods
and greater numbers of classes.

The complexity of this algorithm is
proportional to 1*J*C3 assignments, multi-
plications, and additions, and I*J*C
"compf" calculations. Typically, 10 < C <
60 for the analysis of Landsat data.

The given algorithm can be extended
for a non-linear contextual classifier
with a neighborhood of size nine (as shown
in Fig. 2). The complexity of the algor-
ithm would have growth proportional to
1*J*C9 assignments, multiplications, and
additions. The number of "compf" calcula-
tionsg would still be I*J*C.

For the size nine square neighbhorhood
case, "hold" would be a (2*J+3)-by-C arrav

(assuming the neighborhood window moves
along rows). - The "C" term is for holding
the C "compf" values that are calculated

for a pixel. The 2*J+3 pixels whose
"compf" values are stored in "hold" are
chosen to make it unnecessary to perform
redundant "compf" calculations. In gen-
eral, when classifying pixel (i,Jj), "hold"

has the "compf" values for pixels Jj-1 to
J-1 of row i-1l, pixels 0 to J-1 (all of)
row i, and pixels 0 to j+l1 of row i+l.

After the classification of pixel (i,3),
the values for pixel (i-1,3j-1) are removed
from "hold" and values for (i+l,j+2) are

added. When the pixels on a new row are
to be classified, call it i', then the
values for pixels (i‘'-2,3-3), (i'-2,J3-2),

and (i'-2,J-1) are removed and the values
for (i*+l1, 0), (i'+l, 1) and (i'+l, 2) are
added. (This assumes row i is classified
after i -1.) If J < I, then moving the
neighborhood window along columns would
Save space, since "hold" would then be of
Size (2*I+3)C. Given this, the rest of
the transformation to the size nine square
neighborhood case is straightforward.

IV. CONTEXTUAL CLASSIFIERS ON AN FP ARRAY

The Control Data Corporation Flexible
Processor system is a multiprocessor sys-

tem which has been recommended for use in
remote sensing. The basic components of a
Flexible Processor (FP) are shown in Fig.
4, There can be up to 16 FPs 1linked
together, providing much parallelism at
the processor level. The FPs can communi-
cate among themselves through a high-speed
ring or shared bulk memory. The -clock
cycle time of each FP is 125 nsec. Since
16 FPs can be connected in a parallel or
pipelined fashion, the effective through-
put can be drastically increased.

An FP is programmed in micro-assembly
language, allowing parallelism at the
instruction level. For example, it is
possible to conditionally increment an
index register, execute a program jump,
multiply two 8-bit integers, and add two
32-bit integers ~- all simultaneously.
This type of operational overlap, in con-
junction with the multiprocessing capabil-
ity of the FPs, greatly increases the
speed of the FP array.

The following 1list summarizes the
important architectural features of an FP:

User microprogrammable.

Dual 16-bit internal bus system.

Able to operate with either 16- or
32-bit words.

125 nsec. clock cycle.

125 nsec. time to add two 32-bit

integers.

250 nsec. time to multiply two 8-bit
integers.

Register file of over 8000 1l6-bit
words.

Up to 16 banks of 250 nsec. bulk

memory (each bank holds 64k words).

In order to debug, verify and time FP
algorithms, a simulator was developed for
an array of up to 16 FPs. An assembler
for the micro-assembly level language was
also developed. Both are designed to
operate under the UNIX operating system.
They are described in [8]. Their use in
programming and executing a maximum like-
lihood «classifier is discussed 1in [4].
The FP and the array are covered in depth
in [1,2,8].

Consider using an FP gystem to imple-
ment the contextual classifier based on a
horizontally linear neighborhood of size
three (Fig. 1). Divide the A-by-B image
into subimages of B/N rows A pixels long,
as shown in Fig. 5. Assign each subimage
to a different FP. The entire neighbor-
hood of each pixel is included in its
subimage. Each FP can therefore execute
the uniprocessor algorithm on its own
subimage. No interaction between FPs is
needed, i.e., each FP can process 1its
subimage independently.
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An FP micro-assembly language version
of the algorithm stated in Fig. 3 was
coded and debugged. Because each FP is
microprogrammable, determining program
correctness and analyzing the execution
time is done through the use of the
micro-assembler and simulator. Execution
times per pixel vary because all floating
point operations are done in the software.
The classification time associated with
the first pixel on a 1line is different
from the classification of the rest of the
pixels on the same 1line, since data must
be calculated for each of the pixels in

the window. In all remaining windows,
data must be calculated for only one
pixel.

The pixel measurement vectors, covar~
iance matrices, logarithms of the determi-
nants of the covariance matrices, a priori
probabilities, and hold array are all
stored in the Large File (see Fig. 4). 1In
this way, each FP has all the information
it needs for performing the classification
on its subimage.

If the number of non-zero a priori
probabilities 1is small (less than 50%),
and the contextual information associated
with each GP can be stored in the space of
one floating point number (32 bits), then
any algorithm that stores all a priori
probabilities will waste space. This was
the case in the Landsat data used for this
experiment. To conserve memory space, the
contextual information was stored in the
floating point location immediately
preceding the GP that it was to identify.

For the purpose of testing the FP
contextual classifier program, 30 rows of
16 pixel measurement vectors were classi-

fied. Each measurement vector consisted
of four 32-bit floating point representa-
tions of B8-bit integers. All data were

stored in the Large File. The data set
consisted of a four-class subset of the
data used in [5]. To provide a basis for
comparison, a similar contextual classi-
fier was run on a PDP-11/70 over the same
test data. It was found that lack of
exponent range in the 11/70 floating point
hardware required extra handling. FP
floating point algorithms are implemented
in the software, so a 1l4-bit exponent was
used to overcome this problem. Twenty
non-zero GPs were chosen for the benchmark
tests. Running under the above const-
raints, the single FP classifier took .035
sec./pixel, while the PDP-11/70 required
.050 sec./pixel. If the image data are
too large to fit in the register files,
bulk memory can be used, adding, at most,
1 nmicrosec./pixel to the classification
time, assuming one 16-bit bus between an
FP and 1its associated banks of bulk
memory.

Using .05 sec. per pixel as the PDP
processing time, and .035 sec. per pixel
as the single FP processing time, a 16 FP
configuration, where each processor had
its own bulk memory, would perform contex-
tual classifications at a rate of 457 pix-
els per sec., as opposed to 20 pixels per
sec. for a single PDP-11/70. There are,
of course, cost differences between these
two systems;
to show the gains made possible by a mul-
tiorocessor system.

Consider horizontally linear neigh-
borhoods, in general, such as those shown
in Fig. 6. When using N FPs together to

process an image, each FP handles 1/Nth of
the image. Therefore, nearly a factor of
N improvement is attained over the time
required for one FP to implement the con-
textual classifier. (A perfect factor of
N improvement occurs if B is a multiple of
N. The minor degradation in performance
when B is not a multiple of N is discussed
in [4].) Vertically linear and diagonally
linear neighborhoods (Fig. 7) can be pro-
cessed in a manner similar to that for
horizontally linear neighborhoods[4].

- Consider non-linear neighborhoods,
i.e., neighborhoods which do not fit into
one of the linear «classes. For example,
all of the neighborhoods in Fig. 8 are
non-linear. It can be shown that there is
no way to partition an image into N (not
necessarily equal) sections such that a
contextual classifier using a non-linear
neighborhood can be performed without
sharing data among FPs.

The speed at which the contextual
classifier runs depends on the floating
point algorithms which are implemented in
the software.
require variable amounts of time based on
the number of shifts required to normalize
the data. This can cause a bottleneck in
the processing if one FP is required to
wait for another. Synchronization can
require large amounts of time if the full
16 processor array is used.

Consider the non-linear neighborhood
as shown in Fig. 2. Each box represents
one pixel, while the numbers in each box
refer to the numbering used to distinguish
the various pixels. The use of a non-li-
near context neighborhood implies that
certain data must be shared among the FPs.
For example, assume that the data for pix-
els 1, 2, 4, 5, 7 and 8 are stored in FP
K, and that the data for pixels 3, 6 and 9
aré stored in FP K+l. FP K will need to
communicate with FP K+1 to obtain the data
necessary to classify pixel 5.

An FP is capable of addressing up to
three channels of 16-by-128K bytes of bulk
memory each[1l,2]. The sharing of bulk
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memory is a scheme that can be used for

shared data. One possible implementation
is shown in Fig. 9. Assume each FP will
classify the pixels in B/N rows (Fig. 35).
If border areas are stored in the joint
memory banks, a processor will begin pro-
cessing in banks of bus 1. Processing
will continue through half the banks in
bus 1 to bank 0 on bus 2. After all the
data in the banks on data bus 2 have been
processed, processing will continue to the
banks on bus 3.

Allowing 25% of FP i's data to be
stored in the shared banks on bus 1, 50%
of the data to be stored in the 1local
banks on bus 2, and 25% of of the data to
be stored in the shared banks on bus 3, no
contention will occur. Consider that for
processor i to "catch up" with processor
i+l, processor i will have to process more
than 75% of 1its data in the time that it
takes processor i+l to process 25% of its
data. Contention is not a problem.

An FP will be allowed to address only
half of its memory banks at one time.
This is done to facilitate double buffer-
ing. The other half will be accessibhle by
the host. This allows, for example, the
FP to be classifying the current image
while the host unloads and stores the
results of the previous classification and
then loads the next image to be processed.

The eight-nearest-~neighbor contextual
classifier is similar to the previously
discussed linear case. Differences arise
in the calculation of the discriminant
function, the method of updating the data
for a given window, and the method of data
storage.

The calculation of the discriminant
function for a given class requires that
the class-conditional densities must be
used from the eight surrounding pixels,
instead of the class-conditional densities
for the pixels on just the left and the
right. From probability and measure
theory, it can be seen that the increase
in calculations is exponential instead of
linear. Further, the potential number of
stored a priori probabilities grows at the
same rate. Within the space limitation of
the Large File, either the number of
classes must be kept small or only the
non-zero probabilities must be stored. 1In
some cases, it may be necessary to store
and use only G values above a certain
threshold. The final difference between
the linear neighborhood and the non-linear
neighborhood is that when the window is
moved, the data in the linear case are
shifted from pixel 3 to pixel 2 and from
pixel 2 to pixel 1, while in the non-1li-
near case, the data must be moved from
pixel 3 to pixel 2, pixel 2 to pixel 1,

pixel 6 to pixel 5, pixel 5 to pixel 4,
pixel 9 to pixel 8, pixel 8 to pixel 7.

Timings run with Landsat data from
[5] show that, on the average, the FP
implementation of the four class, size
nine square neighborhood contextual clas-
sifier requires .137 sec./pixel. A
PDP-11/70 implementation of the same
algorithm requires .154 sec./pixel. Tests
for the 11/70 were run with 50 non-zero CP
and 4 spectral classes on 52 lines of 16
pixels, A 30-line by 16-pixel subset of
the above image was used to derive the FP
timings for a 52-line image. Pixels on
the top and bottom line of an image are
not classified, and thus do not appear in
the number of classified pixels. As a
result, for the first and last rows of an
image, the classifier must calculate the
compf values for these pixels without ever
classifying them. Only the non-zero GP is
stored, so only the non-zero GP affects
computation time. Based on the above tim-
ings, a 16-FP array can classify 116 pix-
els/sec., while a PDP-11/70 can classify 6
pixels/sec.

In summary, the organization of the
FP system given above will allow conten-
tion-free sharing of data. This means
that N FPs will be able to operate N times
faster than one FP, Furthermore, the dou-
ble-buffering of the bulk memories will
allow the loading of images to be pro~
cessed and storage of results to be over-
lapped with the classification operation
of the FPs.

V. CONCLUSIONS

A potential hardware organization for
the Flexible Processor Array was pre-—
sented. Timings for the contextual clas-
sifier on a PDP-11/70 and on an FP were
given. With the suggested hardware
configuration, N FPs could perform contex-
tual classification N times faster than a
single FP system. This demonstrates the
usefulness of parallelism for executing
computationally intensive remote sensing
algorithms.
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1 2 3
(1,3-1) (1,3) 1, 3+1)

Figure 1. A p=3 context array (neigh-
borhood). The number above the row

and column indices is the pixel number
for that position in the neighborhood.

1 2 3
(i~1,3j-1) (i-1,3) (i-1,3+1)
4 5 6
(i,3-1) i,3 o 4,3+
7 8 9
(i+1,3-1) (i+1,3) (1+41,3+1)

Figure 2. Three-by-three neighborhood
for classifying pixel (i,j). The num-
ber above the row and column indices
is the pixel number for that position
in the neighborhood.

Main Loop for Algorithm

for i =0 to I-1 do /* row index */

[
for k = 1 to C do /* for each class */

for m = 0 to 2 do hold(m,k) = compf(i,m,k) /* cols.0-2 */
1t = 0 /* hold{lt,k) is left neighbor */
cr = 1 /* hold(cr,k) is pixel being classified */

rt = 2 /* hold(rt,k) is right neighbor */

-

for § = to J-2 do /* column index */
value = -1;. class = =1 /* ﬁax "g" and class */
for k = 1 to C do /* for each class */
/* "g" for pixel i,j class k */
current = g'(lt,cr,rt, k)
if current > value /* compare with max */
then value = current; class = k
print pixel (i,j) is classified as “class™
if j # J-2 then /* not last-column */
/* update hold poéntets */
tp = lt; 1t = cr; or = rt; rt = tp
for k = 1 to C do /* compf's for next col */

hold(rt,k) = compf(i,j+2,k)

Figure 3. Implementation
of a contextual classifier.

PARTY
LINE
CHANNELS

—
SMALL FILE HIGH SPEED |32 oivc
16w x 328 CHANNEL
LARGE FILE MiCRO
4096w x 328 MEMORY
4k worps
BY U8B
ARITH. LOGIC
UNIT

MULTIPLIER '
o

Figure 4. Data Paths in a Flex-
ible Processor. '

Discriminant Function Calculation for Algorithm

function g'(lt,cr,rt,k)
/* discriminant for pixel "cr" (whose neighbors

are "1t" and "rt") and class k */
sum = 0 /* initialize sum, used to accumulate g'(lt,cr,rt,k) */

for r = 1 to Cdo /* all possible classes for pixel ({i,j-1) */

begin
for g = 1 to C do /* all possible classes for pixel
(1,3+1) */
begin

if G(r,k,q) ¥ 0 /* do not do multiplications if G = 0 v/

then
sum = hold(lt,r) * hold{cr,k) * hold(rt,q)

* G(r,k,q) + sum A

end

end

Class—-Conditional Density Calculation

function compf(a,b,k) /* for pixel (a,b),
class k */

x = Ala,b) /* x is pixel measurement §
vector */

expo = ‘ogf:k - [(x—mk)T f;l (x—mk)]* .5

return LE8%PO,

Figure 3 (cont.). Discriminant’
function and class-conditional §
density routines.
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divided among N Flexible
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Figure 7. Vertically and diagou-
ally linear neighborhoods.

Figure 9. Potential memory
organization for striping scheme.

"““ r—1

Figure 8. Non-linear neighborhoods.
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