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ABSTRACT

The estimation of proportions of classes in
the mixed pixels of multichannel imagery data is
considered in this paper. A significant portion of
the imagery data consists of a mixture of the
responses of two or more objects whenever the
objects being viewed by a multispectral scanner are
not large enough relative to the size of a resolu-
tion element. A region of mixed pixels can be
characterized through the probability density func-
tion of proportions of classes in the mixed pixels.
Using information from the spectral vectors of a
given set of pixels from the mixed pixel region,
expressions are developed for obtaining the maximum
Tikelihood estimates of the parameters of probabil-
ity density functions of proportions. The propor-
tions of classes in the mixed pixels can then be
estimated. If the mixed pixels contain objects of
two classes, the computation can be considerably
reduced by transforming the spectral vectors using
a transformation matrix that simultaneously diago-
nalizes the covariance matrices of the two classes.
In addition to the spectral vectors, if the propor-
tions of the classes of a set of mixed pixels from
the region are given, then expressions are devel-
oped for obtaining the estimates of the parameters
of the probability density function of the propor-
tions of mixed pixels. Development of these
expressions is based on the criterion of the mini-
mum sum of squares of errors. Furthermore, experi-
mental results from the processing of remotely
sensed agricultural multispectral imagery data are
presented.

1. INTRODUCTION

Recently, considerable interest has been shown

in developing techniquesl’2 for the analysis of
multichannel imagery data (such as remotely sensed
multispectral scanner data acquired by the Landsat
series of satellite) for inventorying natural '
resources, predicting crop yields, detecting min-
eral and oil deposits, etc. One of the important
objectives in the analysis of remotely sensed
imagery data is to estimate the proportion of the
crop of interest in the image. Nonsupervised

classification or clustering techm‘ques2 which

partition the image into its inherent modes or
clusters have been found to be effective in the
classification of imagery data for proportion
estimation,

Usually, agricultural imagery data have a

field-1ike structure.3 The resolution element or
pixel of the remote sensing imagery corresponds to
approximately 0.44 hectares (1.1 acres) on the
ground. A significant portion of the imagery data
will contain mixture pixels (i.e., pixels contain-
ing objects from more than one class) whenever the
objects being viewed by multispectral scanner (MSS)
are not large enough relative to the size of a
resolution element. The percentage of mixture
pixels in the image depends in general on the size
of the fields. By analyzing a number of remotely
sensed multispectral agricultural images, Nalepka

and Hyde4 have estimated that, for 20-acre fields,
the percentage of mixture pixels in the image is
around 40 percent; and, for fields between 60 acres
and 100 acres, the percentage of mixture pixels
exceeded 20 percent. Hence, to be able to
accurately estimate the proportion of the crop of
interest in the image, it is necessary to deal with
the mixture pixels.

Recently, several resear‘cherss’6 have
attempted to partition or segment a multichannel
image into pure pixel (i.e., pixels containing
objects of a single class) regions or fields and
into mixed pixel or boundary pixel regions.

There is considerable interest in developing tech-

m'quc—_\s“’7 for estimating the proportion of classes
in the mixed pixels. In all the proposed methods
the proportions of classes in the mixed pixels are
estimated as follows. Assuming the spectral
response vector of the mixed pixel as Gaussian, the
proportions of classes in the mixed pixel are esti-
mated as those that maximize the likelihood of
occurrence of its spectral response vector. One of
the reasons these approaches are not successful, in
general, is that the individual observation vectors
are noisy. In this paper, techniques are developed
for estimating the proportions in the mixed pixels
by the characterization of region of mixed pixels.
The probability density function of the proportion
of classes in the mixed pixels is estimated using
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information from the spectral vectors of a set of
mixed pixels from the mixed pixel region.
Estimates for the proportion of classes in the
mixed pixels are then obtained.

II. A MODEL FOR THE CHARACTERIZATION OF
BOUNDARY PIXEL REGIONS

It is observed that more than 30 percent of
the pixels of a typical MSS image are boundary or
mixed pixels (i.e., pixels containing more than one
class of objects).

Let a pixel consist of K small cells of equal
size, and let K; be the number of cells containing
the ith class. Let Xij be a random vector repre-

senting the spectral response of class i in the jth
subcell of these K; cells. The situation is illus-

trated in the figure 1, where for convenience the
subcells of class i are shown as a contiguous
block.

Class i cells

Xi1 | %52

Xij

Xiy.
1Ky

Figure 1.- Spectral response vectors
associated with the cells of class i
in a resolution element.

Let the spectral response vectors Xijs
J ='1,2,---,K1, have mean M% and covariance matrix
z% for 1 = 1,2,+«¢,R, where R is the number of

classes of objects in the resolution element. Let
the total response for the resolution element be
represented by the random vector X. Assume that X
can be written as

R Ki
X= 20 2, %y (1)
i=1 j=1 W

Let K be the total number of subcells of the
resolution element, where

R
K= 2, K (2)
=1

If the entire resolution element were to con-
sist of class 1, assuming independence between the

spectral response vectors of the subcells,* the
mean vector Mi and the covariance matrix Z; of X

can be obtained as follows.

Ms E(X) = KM% }

(3)
and . = cov(X) = Kz}
i i
Since there are actually K; subcells of the
ith class, the mean of X is
R , R
- — ]
E(X) = 1‘?{ KM} = iZ;l o KM}
R
= 5;% a My = Mla) (4)
K
where @ = (5)

and is the proportion of class i in the resolution
element. The proportions o; satisfy the following
relationships.

a; >0 3 1=1,2,se¢,R

(6)

R
and z: ay = 1
i=1

If the random vectors associated with the sub-
cells of different classes are also assumed to be
independent, the covariance matrix of X can be
written as

R R
cov(X) = 121 Ki£; = 'El a Iy = 2(a) (7)
= i=

Let the elements oy, i=1,2,++¢,R, of the

vector o satisfy equation (6)., Let p(a) be the
probability density function of o characterizing a
region of mixed pixels. Let 2, be the region of o

in which the constraints of equation (6) are satis-
fied. Let py(X) be the probability density func-

tion of the spectral response vectors X of the
mixed pixels. It can be written as
Pa(¥) = [ py(X,0)da =f p (Xla)pla)da (8)
Q(7. Q(!
One of the important objectives in the analy-
sis of remotely sensed imagery data is to estimate

the proportion of the class of interest in the
image. If p(a) is known or estimated, given an

*The dependencies between the spectral
response vectors of the subpixels of the classes
are dealt with in appendix B.
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observation vector X of a mixed pixel, the Bayes
a posteriori estimate for the proportion of classes
in the mixed pixel can be obtained as follows.

a=ElalX) = [ ap (alX)da
1Y’

o
J' apm(X]u)p(a)da
Y]
=2 (9)
J; Pm(Xla)p(a)da

o

III. ESTIMATION OF pla) WHEN THE MIXED PIXELS
CONTAIN TWO CLASSES OF OBJECTS

The problem of estimation of p(a) to charac-
terize a region of mixed pixels, given the spectral
response vectors of a set of mixed pixels from the
region, is considered in this section. Very often
the proportion of classes in the mixed pixels is
unknown, The identification of mixed or border
pixels, however, can be obtained by using either
the clustering algorithms or the segmentation
algorithms. Assuming functional forms for pla),
expressions are developed in the following para-
graphs for obtaining the maximum likelihood esti-
mates of the parameters of p(a) using information
from the observation vectors of a set of mixed
pixels. From the analysis of several ground-truth
images, it 1s observed that suitable functional
forms for p(a) are (a) the beta distribution func-
tion and (b) the density function representing the
portion of a Gaussian curve in the region of inter-
est. These functional forms are described in the
following paragraphs. Let a be the proportion of
class 1 in the mixed pixel. Then (1 - a) is the
proportion of class 2.

a, Beta distribution: Modeling p(a) as a beta
distribution in terms of unknown parameters, it
can be written as

Aab(l-a)c ; 0<axl
pla) = (10)
0 ; elsewhere

where b > -1 and ¢ > -1 are the parameters to
be estimated and the constant A is given by

. _Th+c+2)
b+ Ilr{c + 1)

A {11)

and T(+) is a usual gamma function.

b. Gaussian surface: The probability density
function p(a) can also be modeled as a portion
of Gaussian surface in the allowable region of
a. That is, pla) can be written as follows.
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fla) FO0<acl

e
pla) = .g fle) de {12)

0 ; otherwise

where f{a) is a Gaussian density function with mean
me and variance Se. The parameters mge and Sg are

to be estimated. The probability density function
pla) is illustrated in figure 2.

pla)

St ———

L

0 f

Figure 2.- The probability density
function p{a) when modeled as the
portion of a Gaussian surface.

A. MAXIMUM LIKELIHOOD ESTIMATION OF pla)

The estimation of the parameters of pla) is
formulated in this section as that of a maximum
likelihood estimation problem. It is assumed that
the spectral response vectors Xz’ 2 =1,2,e00 N, of

a set of mixed pixels are given. The log Tike-
lihood of the occurrence of the set of given
observation vectors can be written as follows.

N N
Le 2 Toalpy ) = 3 1og[f1 pm(XiIa)p(a)da]
1= i= 0

(13)

Closed form solutions for the parameters of
p{a) that maximize L seem to be difficult when the
functional form of equation (10) or equation (12)
is used for p(a). In general, the parameters of
pla) that maximize L can be obtained using optimi-
zation techniques such as the Davidon-Fletcher-

Powell procedur‘e.s’9 However, iterative equations,
which are similar to maximum 1ikelihood equations

in c]uster‘ing,m’11 for the estimation of param- "
eters of p(a), can be obtained using the functional

form for p(a) given by equation (12). The follow-

ing maximum likelihood equations can easily be

derived by differentiating L with respect to the
parameters of pla) and equating the resulting
expressions to zero.




";1 (lﬂf - a)}f(a)da

- (14)
fl fla)da
()
and
[ - np?
a - mf) Pm(X.i|a)f(a)da
s =1 Z 0
LI 1 I ppXyla)fla)da
: ()
fl fs, - (a - m)2lfla)d
l f o f s a o
+|=2 I (15)
f fla)da
(3

The use of equations {(14) and {15) requires, in
general, that the integration be performed numeri-
cally. From equations (4) and (7), for a particu-
1ar a, the mean and the covariance matrix of the
spectral vectors of the mixed pixels are given by
the following.

Mla) = a Ml + (1 - a)Mz (16)
t{a) = gy + (1- a)Zz (17)

The resolution elements that contain a single
class are called pure pixels. In the following
equations, it is assumed that the spectral vectors
of the pure pixels are Gaussian. For a given a, it
is also assumed that the spectral vectors of the
mixed pixels are Gaussian. In the estimation of m
and Sg, by iteratively using equations (14) and

(15), the computation can be considerably reduced
by transforming the spectral vectors with a trans-
formation matrix that simultaneously diagonalizes
the covariance matrices £; and I, Let A be the

transformation matrix. Then we have12
T .
AzlA I
(18)
and AZAT = A

where AT = @0—1/2w. The matrices o and ¢ are the

eigenvalue and eigenvector matrices of I,. The

matrices A and y are the eigenvalue and eigenvector
matrices of K, where

K = e'1/2¢T22¢o'1/2 (19)

Let the spectral vectors Xg be transfokmed into
vectors Yz’ where

Yl = AXQ 3 2= 1,2,000,N (20}

Let the means M; of the pattern classes be
transformed into g5 where

Hy =AMy i=1,2 (21)

From equations (16), (17), {(18), and (21), for
a given a, the mean and the covariance matrix of
the transformed spectral vectors of the mixed
pixels are given by the following.

ula) = auy + (1 - a)u2 (22)

and S{a) = ol + (1 - alA (23)

The use of py(Yjla) in equations (14) and (15)

reduces the computation considerably since the
determinant and the inverse of matrix S{e) can be
computed directly from equation (23). An estimate
for the proportion of the class of interest (say
class 1) in a mixed pixel with the transformed
observation vector Y is given by the following.

J;l ap(Vla)Flo)da

a=-2 (24)
f pm(Yla)f(a)da
[o]

B. MAXIMUM LIKELIHOOD ESTIMATION OF p{a), WITH THE
CRITERION OF A LOWER BOUND ON L

It is observed that in equations (14) and (15)
the numerical integration is to be performed at
each iteration for the transformed spectral vector
of every given mixed pixel. In the following para-
graphs, it is shown that the computation can be
considerably simplified by using a Tower bound on
the 1ikelihood function as a criterion. By noting
that the logarithm is a convex upward function, a
Tower bound on L of equation (13) can be obtained
as follows.

L > Ll (25)

where L = j;l Ala)pla) da (26)
N

and Ala) = ;E% Toglp, (Y;la)] (27)
1:

Maximum Likelihood Equations for the Estima-
tion of Parameters of pla). The maximum TikeTihood

equations for the estimation of parameters of p(a)
that maximize L; of equation (26) can easily be

shown to be the following.
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pycas

e T

s

B i AT S R 0D A A

Eoisa

[l eAla)fladda [ (m, - @)F(a)da
m.=_9° + .0 (28)
f 1 Ala)f(a)da j:I%(a)da)
(o] [s]
1 2
[ ta-npPatafiards
and Sp = —

I+ Ma)fla)da
0

J: [Sf - {a - mf)z]f(a)da

T
fla)d
j; a)da

+ (29)

It is seen that the use of equations (28) and (29)
requires the integration to be performed numeric-
ally, once for every iteration. In the transformed
space, an expression for A(a) is given by the
following.

-nN N
Ala) == log{2n) -5 21 Togla + (1 - o.))\_l-]
"=

(30)
where
N
M = (Z Yi)
i=1
N
sV = (Z YiY:)
i=1
{31)

N 2
g = glugy - upy)

by = (uh. - uz.l-)[SM(i) - Nu21-]

¢p = wag [0 - Hupy] - 3 svd)

The diagonal elements of the eigenvalue matrix A
are >\1., and the dimensionality of the patterns is
n.

Closed Form Expressions for the Integrals in
Equations (78] and {29), When the Covariance Matri-

ces of the Classes Are Equal., In the following
paragraphs, expressions are derived for the compu-
tation of the integrals in equations (28) and (29)
when the covariance matrices of the classes are
equal. If the covariance matrices of the classes

are equal, then i; = 1 for all i and Ala) in
equation (30) becomes

Ala) = aaz + ba t ¢ (32)
n
where a = Z a, é
i=1
%
n i
b= 2 b, (33) ;
i=1 \
0 nN
and c= 2 Ci - Tog(2m)
i=1
Let $(B) = L fB exp (— 1r2) de (34)
e z

The foliowing can now easily be derived.

1 1 - me -Mme
,g fla)da = ¢ - ol— (35)
/3? /3?
2
-m
J;l (e - mf)f(a)da = ‘/-23:1; exp 2-5—:
(1 - mo)? )
- exp | - —yr— 36
f
4
1 S -m -m
2 f f f
(a - m)fla)da = — {—— exp
[ e nertaen o Wi
2
(1 -m.) (1 -m)
f f 1
- exp |- + fla)d
; 75; ~£ a)da
(37)
3/2 2 2
S m -m
3 f f f
{a - me) fla)da = 2+ exp
fo R T 3?) ¢
(1- mf)2 (1- mf)2
- + ——STF-——_ exp - _Z_S?___.
(38)
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2 3 2
1 S 3m m -m
4 f f f f
(o - mp) Fla)de = —— -] —+ exp
f @ - M) Talda = s g%?? APy
31 -mg) (1w (1 - mo)?
R U . exp| - ~—pr——
/S; 531,72 f
2 ¢l
+ Sfj; fla)da (39)

The integrals in equations (28) and (29) involving
the term A(a) can be expressed in terms of the
above equations as follows.

1
1 2
Ala)f(a)da = a (a - m)"fla)d
J; a)fl(a)da j(; o ¢)" fla)da

+ Z(amf + b) {1(01 - mf)f(a)da

+ (am%. + bmg + c) _';1 fla)da
{40)

1
1 3
Ala)f(a)da = a (a - m.) ' fla)da + {3am; + b)
j;aaaaj;afaa £

fl( -m)zf( Yda + 3am2+2bm +c)
x A [+ f ajaa f f

1
x J(; {a - mf)f(a)da + (am% + bm% + cmf)j;l fla)da
(41)

1 1
J(; (a - mf)zA(a)f(a)da = a j(; (a - mf)4f(a)da
1 3
+ (‘.Zamf + b) jo- (a - me) fla)da

2 1 2
+ {amS + bm, + ¢ (a - m ) fla)da
£ o0 A f
(42)
IV. EXPERIMENTAL RESULTS

In this section, some results from the proces-
sing of remotely sensed MSS imagery data are

presented. Several segments* were processed in the
following manner. For every segment, several
acquisitions are acquired and the images are regis-
tered. Each acquisition is a 4-channel image. The
4-channel image values are transformed into green-

ness and brightness space,13 thus generating a
2-channel image. Two classes are considered.

Class 1 is wheat and class 2 is pasture. The class
of interest in the image is wheat. The resolution
element or pixel of the image corresponds to
approximately an acre on the ground. Each pixel is
divided into six subpixels, and the true class
labels, or the ground-truth labels for each of the
subpixels, are acquired. The pixels containing
only wheat, the pixels containing only pasture, and
the mixed pixels having wheat and pasture in
different proportions are located in the segment.
The spectral response vectors of pure pixels are
assumed to be Gaussian. For a given a, the spec-
tral response vectors of the mixed pixels are also
assumed to be Gaussian. Assuming the functional
form of equation (12) for p(a), the maximum 1ikeli-
hood estimators for the parameters of p{a) are
obtained using equations (14) and (15). The spec-
tral vectors are transformed using a transformation
matrix that simultaneously diagonalizes the covari-
ance matrices of the two classes, Simpson's rule
is used for computing the integrals numerically.
The proportion of classes of interest (i.e., wheat)
in the mixed pixels is estimated using equa-

tion (24). The number of pixels from each of the
classes and the number of mixed pixels are listed
in table 1. Also included in table 1 is the average
true proportion of wheat in the mixed pixels esti-
mated from the ground-truth labels of the subpixels
of the mixed pixels. The estimated proportion of
wheat in the mixed pixels using equations (14),
(15), and {24), after first iteration and after the
convergence, are listed in table 1 for n = 2 and 4.
For a subset of the segments of table 1, the esti-
mated proportion of wheat in the mixed pixels is
listed in table 2 for n = 6 and in table 3 for

n = 8., In general, it is observed that the better
proportion estimates are obtained for n = 4, It is
thought that the degradation in the estimates with
the increase in the number of acquisitions is due
to the registration errors.

V. ESTIMATION OF pla) WHEN THE MIXED PIXELS
CONTAIN MORE THAN TWO CLASSES OF OBJECTS

The problem of estimation of p(a) when the
mixed pixels contain more than two classes of
objects is considered in this section. The
functional forms that can be used for p(a) are the
muttivariate generalization of the ones presented
in section III. These are described in the
following paragraphs.

*A segment is a 9- by Il-kiTometer (5- by
6-nautical-mile) area for which the MSS image is
divided into a 117-row by 196-column rectangular
array of pixels,
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TABLE 1,- ESTIMATES OF PROPORTION OF WHEAT IN MIXED PIXELS FOR n =2 and n = 4
5 Seqnent Location No. of patterns First iteration Iterative Ground-truth
| (county/state) Wheat | Pasture | Mixture | n = 2 n=4 n=2 n=4 proportion
21006 Cheyenne, 100 100 350 0.4664 0.4973 0.4662 0.4973 0.5543
Colorado
31032 Wichita, 100 100 350 0.5091 0.6257 0.5515 0.6263 0.5057
i Kansas
i 31033 Clark, 100 100 343 0.4483 0.4377 0.4188 0.4035 0.5121
Kansas
31060 Sherman, 100 100 350 0.5044 0.5430 0.5065 0.5523 0.5624
Texas
21166 Lyon, 100 100 350 0.5548 0.5474 0.6187 0.6441 0.5100
Kansas
f S bxil Jackson, 100 100 350 0.4852 0.4859 0.4607 0.4716 0.5657
I
A Oklahoma
f 31367 Major, 100 100 350 0.4975 0.4967 0.3079 0.4967 0.5524
i Oklahoma
i bis12 Clay, 100 100 . 83 0.6370 0.5329 0.6279 0,5541 0.5703
{ [ Minnesota
Al by520 Big Stone, 100 100 212 0.4921 0.5340 0.4861 0.5958 0.5464
Minnesota
} b154a Sheridan, 100 100 274 0.5389 0.5044 0.6496 0.5135 0.5024
1
il Montana
‘ Bias 0.248E-1| 0,1767E-1 | 0.2918E-1 | 0.265E-2
ﬁ‘ | MSE 0.354€-2 | 0,35987E-2 | 0.1336E-1 | 0.6245E-2
10,
) 3inter wheat segments.
1 bSpring wheat segments.
e TABLE 2.- ESTIMATES OF PROPORTION OF WHEAT IN MIXED PIXELS FOR n = 6
y
No. of patterns
Location First Ground-truth
Segment
am (county/state) Wheat | Pasture | Mixture | 1teration Iterative proportion
i 1005 Cheyenne, 100 100 350 0.4504 0.4402 0.5543
‘i Colorado
l 1032 Wichita, 100 100 350 0.6362 0.7784 0.5057
i Kansas
1166 Lyon, 100 100 350 0.5480 0.6240 0.5100
Kansas ’
1231 Jackson, 100 100 350 0.4027 0.3143 0.5657
0Ok1ahoma
1367 Major, 100 100 350 0.5080 0.5189 0.5524
0Ok1ahoma
1520 Big Stone, 100 100 212 0.5368 0.5970 0.5464
Minnesota
Bias 0.254E-1 -0.6383E-2
MSE 0.96503E-2 | 0.2787€-1
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TABLE 3.- ESTIMATES OF PROPORTION OF WHEAT IN MIXED PIXELS FOR n = 8

No. of patterns
Location First Ground-truth
Segment (county/state) Wheat | Pasture | Mixture iteration Iterative proportion
1005 Cheyenne, 100 {100 - 350 0.4385 0.3807 0.5543
Colorado
1032 Wichita, 100 100 350 0.6433 0.7522 0.5057
Kansas
1166 Lyon, 100 100 350 0.4969 0.4974 0.5100
Kansas

a. The Dirichlet Distribution: If p(a) can be
represented as a Dirichlet distribution
function, it can be written as

R- R-1 a;

K{1l - o5 [§ ay (43)
J=1 i=1

1, ay > 0 for i =1,2,-++,R, and

R
rl:Z (a; + 1)]
i=1
R

[r(aj + 1)]

R 3y
pla) = K TI ay
i=1

R
where ). o
i=1

K = (44)

j=1

The set of parameters {ai} are such that
a; > -1 for i =1,2,.++,R, and are to be
estimated.

b. The multivariate Gaussian surface: By modeling

p{a) with the surface of a multivariate normal
distribution in the region 2, pla) can be

written as
el dfaea
pla) = J;af(“)d“ (45)
0 ; otherwise

where fla) is a Gaussian density function with
the mean vector M¢ and the covariance matrix
Tg.  The parameters Me and I are to be

estimated.
A. MAXIMUM LIKELIHOOD ESTIMATION OF pla)

~ Given the spectral response vector Xgs

2 =1,2,00-,N, of a set of mixed pixels, the log
likelihood of the occurrence of the given set of
observation vectors can be written as follows.

N ’ N
L= 1ogLr=I1 pm(xi)] = 1'% 109[.(10‘ pm(Xila)p(a)da:'

(46)

In general, using the functional forms for pla)

that are given either in equation (43) or in equa-
tion (45), the parameters of p(a) that maximize L
can be obtained using optimization techniques such

as Davidon—F]etcher-Powe]1.8'9 If the functional
form given by equation (45) is used for p(a), the
following maximum 1ikelihood equations for the
estimation of parameters of p{a) that maximize L
can easily be derived.

js; apm(Xi la)f(a)da
a

1 js'-z pm(Xila)f(a)da
o

Mz

1
M. =
f N'i

1]

[ Mg - a)fla)da
Q
2]

+ (47)
-I;2 fla)da
a
and
TSGR Me) T (X, la) o) da
1 o
T =
f N 1'=Zl f pm(Xila)f(a)da
na
fg [t6 - (e - Qe - Mo T]fla)da
+H—= (48)
_’; fla)da
[+3

It is noted that in equations (47) and (48) the
integrals need to be computed for every spectral
vector at each iteration.
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B, MAXIMUM LIKELIHOOD ESTIMATION OF p(a) WITH THE
CRITERION OF A LOWER BOUND ON L

Since the logarithm is a convex upward func-
tion, a lower bound on L of equation (46) can be
obtained as

L3> L1 (49)
where L = J; Ala)pla)da (50)
o
N
and Ala) = ;Z% 1og[pm(Xila)] (51)
1:

If the functional form given by equation (45)
is used for p(a), the following maximum 1ikelihood
equations for the estimation of parameters of p(a)
that maximize L; can easily be derived,

Ala) fla)d M, - a)fla)d
j;z [o} o [+3 (s ] ];2 f [+ o a
M & + 2 (52)

F L AMoIfladda S, fla)da
o o
and
[ o= Me)a - M) TAG) fla)da
2
f
¥ =
f j;a_A(a)f(a)da

T RCRE AR R LB

= (53)
j; fla)da
a

+

It is observed that the use of equations (52) and
(53) requires the integrals to be computed once for
every iteration.
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APPENDIX A

ESTIMATION OF p{o) WITH THE CRITERION OF THE MINIMUM SUM OF THE SQUARES OF ERRORS

The problem of characterization of a region of
mixed pixels through the estimation of pla) using
information from the spectral vectors of a given
set of pixels from the region was treated in sec-
tions III and V. If the proportion of classes in
the mixed pixels of the given set are also known,
the problem of estimation of p(a) using all the
available information (in addition to the spectral
vectors) is considered in this appendix. The esti-
mates of the parameters of p(a) are obtained using
the minimum sum of the squares of errors as a
criterion.

Let Xz’ g =1,2,+++,N, be the n-dimensional

spectral response vectors of the given set of mixed
pixels. Let ay, i=1,2,++,N, be the R-dimen~

sional vectors of proportions of classes in the
mixed pixels. Given the spectral vector X; of a

mixed pixel and p{a), an estimate for the
proportions of classes in the pixel is given by

f ap(X.ila)p(a)da
Q

a = =2 (A-1)
f p(Xi‘a)p(a)da :
Q

[+]

If the functional form of equation (45) is
used for the probability density function pla),
equation (A-1) can be written as

f ap(Xila)f(a)da
Q

= 2 (A-2)
f p(Xila)f(a)da
Q

o

PN

&

where f(a) is a Gaussian density function with the
mean vector M and the covariance matrix Z¢. The

criterion of the minimum sum of the squares of
errors can be used for obtaining the parameters Mg

and £¢ of pla). The sum of the squares of errors,

e, of the proportion estimates can be written as
follows.

N ,/;; (“i - “i)T“ piX;la) flalda
a

S >3 (R L PR B

i=1

If 8 is a parameter of p{a), differentiating ¢ with
respect to 6 results in

N 3o
3e _ ~ T i
36 " 1'2=1 <°‘1' - “i) 35 (A-4)

From equation (A-2), we get

J ept¥yla) 25 [f(a)lda - a; [ p(X;la) 25 [fla)lda
Q Q

i_.': a i a
d [& p(Xﬂa)f(a)d%
@ (A-5)
Differentiating f{a) with respect to its mean
vector Me yields
5fF(a) _ -1
—EMT = Zf (a - Mf)f((!) (A-6)
1

Let Vi3 be the elements of the matrix z; .

Differentiating fla) with respect to Vij results in
the following.

3f(a) _ 2] fla)
Bvi? = ["ﬁ - (o5 = Mgp) ] -5

3fla)

a\).ij

(A-7)
= £cij - ((!.i - Mfi)(aj - ij)]f(a)
where o5 are the elements of the matrix If and Meq
is the ith element of the vector Mg. Substitution

of equations (A-5), (A-6), and (A-7) in equation
{A-4) yields iterative equations (A-8) and (A-9),
which are similar to maximum 1ikelihood equa-

t'ions,lo’11 for the estimation of parameters Mg and
Ef of P((!).

J Mg - @p(X;la)fla)da

i= _’; p(XiIu)f(a)da
a

fﬂ [te - Mot - wT] i3, - o) Te]ptx o) fadda

* ﬁb K;i' “JT;J - (A-8)

S exjla)f(a)da
A 5
a

L [e - e Mot - ma Tt ledfla)de

S ¥ le)fla)da
n(1.

o T 0. %
* .gi [(u'i a,‘) a"] f p(X;la)fla)da
A .
o

(A-9)
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When there are only two classes in the mixed vectors using a transformation matrix that simul-

pixel, as shown in section 3, the computation can taneously diagonalizes the covariance matrices of
be greatly reduced by transforming the spectral the classes.
APPENDIX B

EFFECT OF CORRELATIONS BETWEEN THE SPECTRAL VECTORS OF SUBPIXELS
ON THE MOMENTS OF SPECTRAL VECTORS OF MIXED PIXELS

¥ In section 2, it is assumed that the spectral Qi Qisr
vectors of the subpixels are independent. The Let gl (B-6) 4
purpose of this appendix is to take into account iz T
the correlations between the spectral vectors of Qisr Qi
subpixels in developing expressions for the moments
: of the spectral vectors of the mixture pixels. If . ;
3 the entire resolution element were to consist of If the random vectors xi. and xjq are Gaussian
| class 1, the spectral vector X of the resolution with mean M% and covariance matrix z%, the condi-
element can be written in terms of the spectral : . . R
vectors of the subpixels as tTona1 probab111ty'den31}y p(x15|x1r)'1s normal
y with mean vector M; - GigOygp(Xyy - M) and 1
=3 X1 (B-1) covariance matrix Q;”. Now consider ?
=1 ‘
| E [y, - My - T = J g - )
The mean vector M; and the covariance matrix £; of
o X can be obtained as follows. Wt
i x[f(xis - M1.) p(x.islxir)dxis}p(xir)dxir
H My = E(X) = KM% (8-2)
e (8-7) ;
- Ly = cov{X) Using equation (B-7) in equation (B-3) yields
. =E Xs: = MY) Xis = M) £, = Kgb - I} 21 0;..0 B-8
i = ij i i ij i i i L= = isris
il s#r
HE K '
gIe =El D (Xij = M (xg5 - M%)T It is assumed that the covariance matrix I;.. b
ik J=1 of radiance vectors xj¢ and xj, can be written as |
0 {
Ll £ i ( T ' ( )
b + Xes = MI)(x, - M3) o= a2 B-9 ‘
R =& iJ ik i isr srod
b ! k#J where a., is a constant which may depend on the
*MWY KX T spatial distance between the Pt and the sth
Wl = Kz% + Y, E[(xij - M;-)(xik - M%) ] (B-3) subpixels. Using equations (B-5), {B-6), and {(B-9)
g =1 k=1 in equation (B-8)} yields
; k#j
: K K
1f the spectral vectors of the subpixels are £y = Key + > > CI b (8-10) “
independent, the second term on the right-hand side r=1 s=1
of equation (B-3) becomes zero. Llet s#r
T T T The quantity within parentheses in equa-
Zigp = (Xis’xir) (B-4) tion (B-10), in general, depends on the number of
subpixels and the spatial arrangement of subpixels
: . . or on the shape of the region of a class in a
Let £y, be the covariance matrix of the random resolution element. iet & be a quantity represen-
vector Zjgps which can be written as tative of the shape of a region of a class in a
. . rasolution element; then, equation (B-10) can be
' ¥ Tigp written as
%iz T (B-5) L. = Kgt + oKz} = vKEj {B-11)
5! gt i i i i
isr i
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where v={(1+358) (B-12)

If there are R-classes and Ki subcells of each

class in a resolution element, the spectral vector
of the resolution element can be written as

i: X {8-13)

Ks
=1

R
X=X
i=1

The mean vector M of X can be obtained as
follows. Consider

(B-14)

Assuming the spectral response vectors of
subpixels of different classes are independent, the
covariance matrix of X can be obtained as follows.

K K
R J . R T
E [E: jz=1: (X'ij - Mi):”iél j£=1: (x‘.j - Mi)]

£ = cov(X) =
i=1
Ky Ky :
. jtle“;l ?:1 E[(x,‘j - M (x;, - W) ]:
R R v, K R
i _
= i§1 (1 + 80Kz = Ei e R i i% 850414
(B-15)
Vi
where By =5
{B-16)

v = (1+6i)

and 84 is a quantity representativevof the shape of

the region of ith class in a resolution element. A
comparison of equations (7) and (24) shows that the
effect of correlations between the subpixels of
classes is to introduce the constants 8;.
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