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ABSTRACT

A method of classifying MSS data is proposed
which has some advantages in that it does not
contain the usual pre-processing constraints, and
caters for variation and correlation in the data.
In addition 1t is very economic in terms of
computer time.

I. INTRODUCTION

Spectral pattern recognition has been widely
used in remotely sensed data processing. Numerous
approaches and classifiers have been developed.
Among them the following three are typical 1,

l Minimum distance to average means classifier,
2. Parallelepiped classifier,
3. Gaussian Maximum likelihood classifier.

These classifications enable a lot of useful
work to be undertaken, but they possess some
disadvantages. The first one is very clear and
simple in concept and it can be dome relatively
efficiently, but it has an obvious weak point: it
does not consider the different wvariance of
different spectral classes. For example, in an
unsupervised clustering procedure Euclidean
distance between two points in the feature space
is often used and all the classes are treated in
the same way.

The second classifier has some advantages as
it takes account of the fact that different
classes have their own particular spectral
distribution: the variances are not the same.
This classification can be carried out both
rapidly and efficiently, but it neglects the fact
that the spectral data of ground cover are highly
correlated between different bands. If, in the
feature space the parallelepiped corresponding to
different classes have some overlap, then it would
be difficult to discriminate between them.

The third classifier has the advantage in
that it takes account of both the spectral data
variation and correlation. Currently it is
considered as the optimum system - in theory at
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least - but it takes considerable computer time to
use the classification. Moreover, it cannot be
claimed that this approach is perfect, even in
theory, as the supposition is not always correct
that the spectral data of the ground cover is of
approximately normal distribution. It is clearly
necessary to find another way to carry out data
classification which can be done more efficiently
and without the drawbacks 1listed above. The
method proposed here is an attempt to do this.

2. THEORETICAL CONSIDERATION AND THE
NATURAL CLASSIFICATION PROCEDURE

Using selected MSS bands a feature space can
be compiled, each band corresponding to -a
dimension in it. According to the digital values
of a pixel in the relative bands, a representative
point can be found in the feature space. If this
is done for each pixel in the processed scene,
then a set of representative points in the feature
space is obtained. Generally speaking, the
representative points do not distribute
constantly, but at random, rather like the clouds
in the sky, somewhere dense and somewhere thin,
and it will change from scene to scene. Although
the representative points from one particular type
of ground cover do not occur in a same position in
the feature space, (that is because the variety of
the natural conditions) they tend to concentrate
together in a small area, to form a cluster. This
is the theoretical basis of the three classifiers
considered here, and it is also fundamental to the
natural classification proposed by this article.

Of course there are some differences. The
minimum distance classifier considers that the
representative points of a class distribute like a
sphere in the feature space, with no correlation
between different spectral bands. The
parallelepiped classifier takes into account that
the representative points of a class distribute in
a parallelepiped, which can be of different size
corresponding to different ground cover, but it
still mneglects the correlation between the
different bands. The Gaussian Maximum likelihood
classifier supposes that the representative poilnts
are of multi variate normal distribution.
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The method proposed here does not put any
constraints on the data distribution, and it is
designed to describe the clusters in quite a
natural waye The places where there are
relatively dense representative points are cluster
centres, and the places where there are less
representative points are considered as the
cluster boundaries. In a two-dimensional feature
space if we regard the number of representative
points as the height, then the cluster centres are
the peaks, and the cluster boundaries are the

valleys.
The main procedures are:

1) To incorporate the statistics in the data
feature space. (It is possible to include some
feature selection or feature transformation, or
both, in this step).

2) First to find the class centres, -and then find
the cluster boundaries by region growing.

3) According to the boundaries to classify the
whole scene and to make decisions.

The following are some examples to illustrate
how the natural classifier works.

3. CLASSIFICATION USING ONE-DIMENSIONAL DATA

In order to reduce the complexity of the
problem and to separate the information from the
noise, it is necessary to do some feature
selection or feature transformation, or both: if
the problem concerned is to find the surface water
area, it can be resolved easily by using only one
spectral band data. In this case the reflected IR
band (band 6 or band 7 in Landsat) is the best
choice.

The procedure 1s as follows:

1) Scan some representative areas to obtain the
statistics of a chosen feature.

2) Find all the digital numbers corresponding to
the minima of the statistics.

3) Choose the class boundaries from the digital
numbers.

4) According to the boundaries to classify the
interested area.

Using this method the surface water near the
Colchester area (England) can be shown clearly
(See Diagram 1).

In some instances the one-dimensional

classification can be considered as a special
density slice, or a kind of threshold.

4. CLASSIFICATION USING TWO-DIMENSTIONAL DATA

The principles are the same as for one-
dimensional, but the procedure is slightly
different.

1) Scan some representative areas to obtain

two-dimensional statistics of the selected two
features.

2) ¥ind all the values of the features which
correspond to the peaks of the statistics.

3) These peaks will be considered as the

cluster centres if they are far enough (the
distance relates to the feature space) one from
another.
‘ 4) Find the cluster boundaries by region
growing, and at the same time create an overlay of
the two-dimensional statistics. The overlay is
using different characters to represent a
different class, and can be considered as a two-
dimensional class mark tables*

S) Scan the interested area, select the
first pixel, refer to the class mark table and
classify the pixel. Repeat this process until the
whole scene is covered.

The feature selected always corresponds to
what 1s wanted. If it is required to find the
vegetation cover of some area then it is not
enough to use one spectral band data only.
According to the spectral characteristic of
vegetation, it may be easier to get satisfactory
results by using ratios: e.g. band 4/ band5 and
band 7/ band S.

Diagram 2 gives the statistics in a two-
dimensional feature space, and diagram 5 gives the
overlay - ‘a class mark table’. Diagram 3 is the
spectral classification map and 4 is an 0/S map of
part of Colchester area. The white regions
correspond to surface water, and the dark regions
correspond to the land; the darker the area, the
more likely it is to be vegetation. It is
interesting to note that the two bridges across
the Abberton Reservoir can be clearly seen.

5. CLASSIFICATION USING THREE-DIMENSIONAL DATA

It is well known that the dintrimsic
dimensionalit% of Landsat MSS data is
approximately two“, when dealing with this kind of
data, it is not necessary to use more than two
dimensions. The following is an example to show
how the natural classification works in the multi-
dimensional situation.

The principles and the procedures are the
same as in the two-dimensional case, but there is
a unique feature which must be stressed and which
is connected with the computer memory store.

* A Class Mark Table is a table in the feature
space which can be considered as an overlay of the
corresponding statistics and consists of different
characters, each one stands for a definite class.
When classifying first find the representative
point in the feature space for a pixel, and then
use the overlay class mark table to classify that
pixel.
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It is very difficult to create a three-
dimensional feature space as large as 128 x 128 x
128, so besides the feature selection, the feature
scale transformation and compression are
essential. The simplest example for doing this is
shifting and clamping.

The following is a typical procedure:

1) Scan some chosen area to obtain the one or
two~dimensional statistics for some features.

2) According to the result of the preceding step
make the feature selection, transformation,
shifting and clamping in order to compress the
data, but keep the necessary accuracy without any
degradation.

3) Create the statistics in the three-dimensional
feature space.

4) In the space find the points which correspond
to the maximum of the statistics.

5) These will, under certain conditions, be
accepted as the cluster centre. From these
centres the boundaries will be found by region
growing, and at the same time an overlay of the
statistics will be produced: it is a three-
dimensional class mark table.

6) Scan the interested area, select one pixel,
look at the mark table; the classification can
then be obtained very rapidly. Repeat the
procedure for the next pixel, and continue over
the whole area.

Diagrams 6 to 8 are examples to show the
sections of the three-dimensional statistics and
the class mark table, which are through a point in
the feature space and parallel to the three
coordinates plane.

The spectral classification map produced is
similar to 3, but limitations of space and time do
not permit further consideration of this aspect.

6. DISCUSSION

The significance of the method proposed here
is its efficiency. There are no pre-processing
contraints on the data distribution in the feature
space, the only supposition is the clustering
tendency of the data from one kind of ground
cover. When processing, the data of the processed
scene 1s passed through the computer only twice.
The first pass is for incorporating the statistics
in the feature space: in this pass the only
calculation needed is additionm, once only for each
pixel. The second pass 1s after cluster boundary
finding and is for classification. This pass is
very simple and does not need any arithmetic. In
this pass the only action is to look at the mark
table and obtain the classification result.

Obviously, wusing this method of
clagsification it 1is necessary to know about the
spectral reflectance of the ground cover, either
at the beginning of the processing to extract the
feature, or in the final stage to interpret the
spectral classification.
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