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ABSTRACT combining several visual and qualitative criteria.

i A remote sensing user does not photointer-—
P prete image pixels, but entities. Therefore, there
T is a segmentation processing, previous to the reco-
i gnition itself. What we propose in this paper, is

: to automate the segmentation by using of monospec-—
tral, multispectral and multitemporal properties,

”w : measured by several criteria. The combination of
SN these criteria is performed by means of tools of

3M the fuzzy sets theory. A designated entity is auto-

matically segmented by combining a sequence of cri- . s s
teria in order to converge towards the final deci- perform the segmentation of an entity designated by i

I sion without any thresholding, weighing, ... only one inner.point ¢ this region growing_is based j
I on edge detection and connectivity evaluation.

The chapter 3 describes how to combine the
segmented resuls from date to date, by using the i
geometric corrections, with the goal of minimizing ‘
the mislocation errors.

We will attempt to automate the segmentation
by modelizing both the concept "qualitative crite-
rion" and the operations of combination. The fuzzy
sets theory appeared as a good approach for this pro-
blem and some basic concepts of this theory, used
for our application, are developped in the first
chapter.

The chapter 2 details some algorithms used to

The ready access to the multitemporal data
belonging to a same designated entity, is obtained
by comparing the segmentation results at different
dates, through geometric deformation models.

The different results are pooled in the last

Finally the radiometries, extracted entity/
chapter.

entity, by using this segmentation method, feed the
diachronic analysis in the context of the Lauragais
experiment.

I. MEMBERSHIP FUNCTIONS AND COMBINATION OF

CRITERIA
0. INTRODUCTION

A. Basis in fuzzy sets theory

Diachronic ("Through the time'") analysis of

remotely sensed data augments the more classical To define a subset, in the classical theory,
multi-spectral analysis, by adding the time dimen- is equivalent to give a characteristic function :
sion in the form of multiple, sequential views of a

scene. Specifically : suppose that a remote sensing x e X - fA(x) = 1 iff xe€ AcX

user wants to analyse the seasonal or even the year-

ly evolution of cultivated fields, with the goal =0 else

for example, of predicting crop yields or assessing

damages. Since the phenomena at hand evolve in time, In a similar way a "fuzzy subset" é is defi-

it is natural to consider multitemporal measure-
ments, thus adding the time dimension to the more
conventional multispectral analysis.

ned by its "membership function", which is an ex—.
tension of the concept of characteristic function
over the real domain [0,1] :

The reduction of multispectral and multitem-
poral data, which we call diachronic analysis, re-
quires ready access to the measurements (pixels)
that pertain to each entity of interest (cultiva-
ted fields), which we call segmentation.

xeX - UA(X) e [0,1]

uA(x) measures the degree of membership of x to é.

To define a fuzzy subset is equivalent to

: The segmentation of data within an image, give a memberhip f?nction, and'reciprocal}y to

w as performed by a photo-interpreter, to merge give a function defined on X, with values in [0,1],
¥ . - . . . i

o pixels into different entities, is the result of allows to build up a fuzzy subset. :
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A coherent theory of fuzzy subsets grew up,
as a very helpful means of handling qualitative cri-
‘teria [1], from this basic definition.

A photo-interpreter knows how to describe
a designated entity in a remotely sensed image, by
some qualitative criteria. Then we will define seve-
ral simple tools of the fuzzy set thory, useful to
combine these criteria in order to define the desi-
gnated entity as a result of intersection or union
of the fuzzy sets associated to each criterion.

- intersection of fuzzy sets :

The conjunction of two criteria related to
the fuzzy sets A and B is related to the intersec-
o N

tion é n % and may be defined by :

uAnB(X) = Min (uA(X),uB(X)) ¥xeX

- union of fuzzy sets

The disjunction is related to the union
A UB and may be defined by
NN

(x) = Max (uA(x),uB(X)) ¥xeX

MauB
- complementation

The negation of a criterion defined by My

is given by :
u-&(x) =1-u&

Several other definitions of the intersec-
tion or union of fuzzy sets given and compared
in [2] and [3],are more or less restrictive on the
combination of criteria. A means of weighing the
different results is to compute the index of fuzzy-
ness of the combinated set. If the combination yields
a binary response, the index of fuzzyness will equal
zero, if the incertainty is total, the index will
equal 1. This concept is very close to the entropy,
as a scale of the information of a signal. Different
indexes of fuzzyness may be found in [11].

B. How to combine criteria

We distinguish three different classes of
criteria :

- monospectral criteria

These criteria are computed from the same
set of radiometries, using different functions de-
fined over local neigh borhoods of the pixel. Their
definitions are weakly independant but it looks use-
ful to examine their conjunction. For example the
field we attempt to segment, encompasses inner
points (complement of edge points) and homogeneous
points. Therefore we will consider the intersection
of the two fuzzy sets : (edge) n (homogeneous).

- - multispectral criteria

The same criteria are computed over different
spectral bands. The less the spectral bands are cor-
related, the greater is the disjunction of the cri-
teria. Therefore we will consider the union of the
fuzzy sets ( criterion/band i) U (criterion/band j)

- multitemporal criteria

Some kinds of events are highly correlated
between different dates, but the geometric errors
(through the deformation models) bring differences
in their location. In this case, as it occurs with
the edges for example, we will use "compromise ope-
rators', such as the mean [2]. If the events look
uncorrelated, we will use the disjunction.

II. FROM IMAGE PIXELS TO FUZZY SETS

A. Fuzzy Edge Detection

We didn't introduce a new edge detection al-
gorithm in this paper, but we checked, besides thec
classical derivative operator, the FOSD fictitious
over-sampled derivator [4] and the complex gradient
operator [5]. The first one gives good results on
images where the pixel size and the elementary ob-
jects size are similar in a ratio I, up to 10 (with
Landsat : 5000 to 50 000 square meters). The second
gives both an amplitude and a direction information.

The membership function of the fuzzy set of
"edges", is computed by the following way :

- plot the histogram of the values given by
the operator (ed(i,j)),

- select two thresholds (tl < t2) so as to
split the histogram in three zones :

1- from O to threshold tl = 70 Z of pixels where
the membership func-
tion equals O

(= trusty no-edge)

fe(i,j)=0

2- between tl and t2 : linear function which gi-
sy ves a membership value in
ed(d,j)-tl the range [0,1] (=fuzzy
t2-tl
edge)

fe(i,j)=

3~ from t2 to 255
fe(i,j)=1

10 Z of pixels with a value
1 (= trusty edge).

B. Fuzzy Region Growing

The set of inner points, related to a same
entity, is included in the complement of the set of
edge points, must encompass the designated point
(designated by the user or by automatic locating)
and must be '"connex" (one-piece entity).

Then, given the designated point (x,y) in the
entity of interest, any point (i,j) will belong to
the same entity if and only if:

- it is a no-edge point: fe(i,j) is small,

-~ there is a "path" between (i,3i) and (x,y),
which never run through any edge point.
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This second condition is not related to the
edge values themselves (what wouldn't bring more in-
formation) but to their local relations.

The "shortest path algorithm"

~ let the "crowns" be defined by

i

~ let the "flat distance" between (i,j) and
(k,1) be df=max(li-k|,[j-11), what is coherent with
the definition of the crowns, instead of the eucli-
dian distance;

- let the "additional distance” be propor-
tional, by a factor a (=10 for example), to the dif-
ference of heigth between the edge values fe(i,]j)
and fe(k,1).

- start by setting each pixel at the value
fe(i,j)=-1-a.fe(i,j) if (i,5)#(x,y) '
fe(x,y)=0

- search, for every pixel in the crown n,
among its 8 neighbors, if there exists a value i
(i=0 at the first step),
if yes, then fc(i,j)=i+a.fe(i,j)
if no, go to next point in the same crown;

- then go to next crown n=n+l, up to n=N;

- then go back to crown 1 with the level
i=i+1, up to i=I.

At the end of this algorithm, we got, for
every (i,j) in the (2N+1).(2N+1) window around (x,y)
the additional distance da, cumulated along the
shortest path from (x,y), what can be compared with
the flat distance df at the same point.
Hence we define the membership function:
fc(i, j)=1-da/(b.df) ,where b=1/4 for example
fe(i,j)=0 ,if da>b.df

This function defines the fuzzy set of the

points connected to (¥,y), and the algorithm is what
we call the fuzzy region growing.

III. THE TIME DIMENSION

A, Geometric corrections

Each view of a same scene, among a multi-
temporal sequence, is geometrically deformed with
respect to a cartographical reference. Even in the
Lauragais experiment [6], where we chose one image
of the sequence as a cartographical reference,
instead of a map, the relative deformations between
aerial scanner images are very strong.

A large part of the work was devoted to
automate the correction of these deformations. From
no more than 10 to 20 points, visually located on
both images, we automatically locate 100 to 200
points, what is enough to build up a model between
two images. Nine images were processed.

In order to fit the deformation as well as
possible, the processing approximes it by a sequence

of local models, joined to each other by a smoothing
function; this is called the Sliding Model [7].

In spite of these corrections, mislocations
holds on and residual errors don't move down 2 or
6 pixels RMS, depending on the date, and maximal er-
rors may reach 10 pixels on image ends.

The segmentation is successfully performed
date/date, by using only the location of the desig-
nated point on the reference, under the assumption
that its locations on the different dates, as com-
puted by the models, are still inside the entity.

B. Multitemporal extraction of radiometries

In order to limit the importance of the geo-
metrical errors, we compare the fuzzy sets grown at
each date with the fuzzy sets resulting from the
deformation, by each model, of the fuzzy set segmen-
ted on the reference.

If bhe fuzzy edges overlay each other within
margins less than a chosen threshold, we conclude
they are identical. The thresholds are chosen equal
to the RMS errors computed with the corresponding
models, as illustrated by the following table [7]:

date flines § RCPs suce, RootMeanSq. Error ocal
auto post‘ 3 'nlong across global [models
-
v
may 30 1978 3636 99 - 16,2 | 3.3 . 2.9 . 4.5 15
apr. 12 1879 2060 8o L] 15.2 | 8.5 . 4.7 . 6.5 7
June 1§ 3000 73 - 11.3 1 3.8 . 3.% .5.2 8
july 07 2950 93 L} 14,2 ] 3.9 . 5.3 . 6.5 8
sep. 17 2500 85 . - 11,5 h.6 . 4.6 . 6.5 10
oct. 30 2070 89 . - 15.7 1.8 . 5.8 .6 11
may 10 1980 2060 reference image reference image reference ima
June 03 2070 252 . - 2119 .25 .30 19
jure 16 2200 300 . - | 38.6 {.2.2 . 1.4 . 2.6 17

In the opposite case, we conclude the edges
are different : that happens several times because
of crop changes, harvesting ...
therefore we consider the intersection of the fuzzy
sets as the final segmented entity.

Finally the diachronic analysis will use the
radiometries extracted from the classical set §
associated to the fuzzy segmented entity A by :

$={xeX,u, (x)#0}

the smaller is the index of fuzzyness of A, the
better is the segmentation.

IV. SAMPLED APPLICATION AND RESULT

The extraction of the radiometries of a rec-
tengular field (about 50 by 60 pixels) is illustra-
ted in a two spectral bands example. ’

Figure (a) shows the original histogram of
the 256x256 image in the green band.

Figure (a)bis shows the histogram computed
over a rectangular window superimposed, by the ope-
rator, over the designated field. The min and max
values were selected from this histogram by the
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operator : 60 and 100.

Figure (b) shows the histogram computed
from the data extracted by the segmentation in the
green band. Note that the histogram is less noisy
in the right side. The min and max values are auto-
matically selected as thresholds corresponding to
5% and 957% of the histogram : 58 and 165. This is
not satisfying, but let us wait what follows.

The same segmentation is performed over
the red band, then merged in the multispectral com-
bination of fuzzy sets. We can compare the numerical
results obtained with mono- and multi-spectral seg-
mentation in the following table :
(note the values 58 and 106 in the green band)

mono malti

mean : 83 mean : 76

green std.dev. : 32 std.dev. : 19
band min (5%) : 58 min (5%) : 58
max(95%) : 165 max(95%) : 106

mean : 102 mean : 99

red std.dev. : 23 std.dev. : 16

_ band min (5%) : 80 min (5%) : 80

max(95%) : 142 max(95%) : 124

Figure (c) shows the histograms of green
and red band, for comparison and selection of a
multispectral signature.

Figure {a)

Miglnat Image
histogyram

100
Figure {a)bis

Rectangular window
visually selected

histoqram

-
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