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I.. ABSTRACT

In the most of all statistical approaches in
pattern recognition theories in remote sensing it
is assumed that each probability density function
of pattern classes. can be approximated by the
Gaussian probability density function. However,
this assumption is not always appropriate in
practice. The exact shape of class probability
density function is supposed to be expressed as an
original histogram. And if the shape of the
histogram is largely different from the Gaussian
function the classification results might include
large error.

Therefore, there seems no need to persist in
Gaussian probability density function as the only
representation of class histograms. In other words,
if there are other functions which can approximate
the original histograms more accurately than the
Gaussian function can, we would better to adopt
one of those functions as a representation of a
pattern class histogram. )

From this point of view, a probability density
function was expanded by adding another parameter
to the Gaussian function so that it can approximate
histograms more flexibly and still can include the
Gaussian function itself as a special case.

The expanded function used here is a
non-symmetric Gaussian function which has two
independent standard deviations for each side of
the mode so that it can approximate the
anti-symmetricity of class histogram.

In this paper some characteristics of the
non-symmetric Gaussian probability density
function were studied, Then the fitness to the
original histogram was examined by chi-square test
and compared with that of the conventional
symmetric Gaussian function. The comparison
between symmetric and non-symmetric function was
accomplished also on the results of a test run.

IT1. NON-SYMMETRIC GAUSSIAN PROBABILITY
DENSITY FUNCTION

In the discriminate procedure of maximum
likelihood classification, the most important point
as a good approximate function is how accurate it
can define the decision boundary rather than how
accurate it can trace the fine feature of the
original histogram.

The position of the decision boundary should
be defined as the intersection of the histograms
of two classes, Even though we limit our
considerations to unimodal classes, actual
histogram can be characterized in various ways.
However, it seems natural to introduce
anti-symmetricity as the third parameter besides
mean and standard deviation. Because the position
of the decision boundary depends on the positions
of the modes and the decreasing ratios of each
class, and the decreasing ratio of the side where
intersection may exist is not necessarily the
same as that of the other side.

From the above mentioned point of view,
non-symmetric Gaussian probability density
function was considered. This function has two
independent standard deviations for each side of
the mode and will be equal to the Gaussian
function only when the two standard deviations
are equal to each other.

In one dimensional case, the function is
defined as

P(x) =

2
2r(q+ o) exp{' 207 T=0, for x>
(1)

(_X:ﬁ)i} {0’=% for xgp

where M is a mode rather than a mean, ¢ and G
are the left and the right standard deviations
respectively.

In order to obtain the set of three parameters
M, 05 and Op from original data, let us discuss
some characteristics of the non-symmetric Gaussian
probability density function.
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At first, from the definition of the function
(1) we easily obtain some integration formulae as

lf";’(x)dx

—-o0

1

[ = p-[EG-0

(2)

(3)

fx’P(x)dx =/AX -2’4{2;(01—0;) + (Oiz—oio;a- 0 (4)
fx’p(x)dx = -3#‘&«7, -G;) + 3 MG -GG, + G}) -2E(q-m)(q‘+o;’) (5)

These integrations are corresponding to sum,
square sum and cubic sum of the original data.
Let Z., Zz and Za be average, square average and
cubic average respectively. Then we obtain

o

1 9
z‘l= a- Elxi = j::d’(x)dx (6)
q o
1
ZZ= —q- "z:i x; = qu"P(x)dx (7)
9 £
_ 1 3 3
2y= Py iZ:I. X3 J:: P(x)ax (8)

Let § =M=, , then we obtain the equation
(see Appendix A)

(T-3) 8- (5,-52) = (5,-35,5,+2E) =0 (9)

and
M= Z'+§' (10)
0 = {Zz-fj‘q-(l _gn)s‘}”+ES (11)
o,::{zz-zf:,(l-gn)s'}&-jgg (12)

Thus, the parameters M , 03 and 0 can be
obtained from %L,, Z,, 53 and § . And J is a
solution of the equation (9) which is the third
order equation, Here let us discuss a few points
about this equation, The coefficient of the third
order term (/f-3) is obviously positive and the
coefficient of the first order term -(Z,-11) is
always negative because the value (Z,-¥?) corres-
ponds to the conventional variance ¢2*, Therefore,
the function of the left-hand side of the equation
always has maximum and minimum value, And through
some considerations on the meaning of $ which is
the difference between mean and mode, the solution
we need should be exist between the maximum and the
minimum points.

However, the equation (9) has such a solution
only when the maximum value is positive and the
minimum value is negative, In fact, there are
some cases which the shape of the histogram is
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extremely different from the Gaussian type that we
can not obtain the correct solution for § and can
not define the non-symmetric Gaussian function.

In order to avoid this difficulty we took a
different definition for § when the equation (9)
does not give an adequate solution. More details
will be mentioned in Appendix B.

Fig. 1 shows an example of the non-symmetric

Gaussian function together with the corresponding
original histogram and regular symmetric Gaussian
function.

—— non-symmetric function

(M =29,64, 0y =1,44, Oy =2,85)
sees sSymmetric function
(M =30,76,0 =2,20)

25 B 35 X
Fig, 1 Symmetric and Non-symmetric Gaussian
probability density function

In this case the fitness of the non-symmetric
function to the original histogram is more than
80% according to chi-square test., On instead, the
fitness of the symmetric function is less than 30%.
This is only an example, however, most of other
classes also shows the significant improvement in
fitness.

Fig. 2 of the next page shows an example of
the comparisen of decision boundaries derived from
non-symmetric and symmetric functions., This
example shows only around the decision boundaries,
however, it clearly shows that the non-symmetric
function has a effect to move the decision
boundary close to where is expected from the
original histograms.
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Fig. 2 Decision boundary from non-symmetric
and symmetric function

(b) symmetric function

III. EXPANSION TO MULTI DIMENSION

We have discussed non-symmetric Gaussian
function for only one-dimensional case so far,
Now we must expand this function to multi dimension.

Before considering non-symmetric function,
let us refer to the symmetric function, The multi
dimensional Gaussian probability density function
is given by

p(z):mexp{—é(;—ﬁ YV"( ;—-1;)} (13)

where ¥ is a data vector, U is the mean vector,
V is the covariance matrix, |Vl is the determinant
of V, V' is the inverse matrix of V and {(x-3 )
is the transpose of vector (¥-U). Let [ be the
correlation matrix and S be the diagonal matrix
with components of the set of standard deviations,
that is

ol - Fin o
= 3:11 TSR S (where V"J':-—JL—)

P : G

| S T (14)
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S: ". (15)
0 T

then we obtain

V=58Ms (16)
it qsinsl” =iri” 1 o (17)
vi=g'r's? (18)

therefore, (13) will be rewritten as

As analogy to one dimensional case, the multi
dimensional non-symmetric Gaussian function can be
given as

P(R)= 2 & 13RS @b}
TR R (g o) L 2 *-u
' (20)
where
a, 0
S< G, . G= Oii for Xi‘é/li (21)
- 0 ., 0= 0y, for xjisu
L i
On

and § is the mode vector.

In this replacement, we assumed that the
correlation matrix ™ is constant in whole space
regardless of the change from C; to 0. This
assumption is not a priori, however, it is not
unreasonable either, In fact, it is almost
impossible to define correlation matrices for each
subspaces according to each combination of left or
right standard deviations for each channels, because
of the restricted number of data and large number
of memory location requirement,

IV. COMPARISON WITH THE CONVENTIONAL METHOD
A. COMPUTATION TIME

For this study some LARSYS programs were ‘%
modified temporarily so that they can deal with ’
the non-symmetric Gaussian function, The modified
functions are "CLUSTER" function which is for
clustering and calculation of statistics for each
cluster, "STATISTICS" function which calculate
statistics for classes corresponding to indicated
region of data, “MERGESTATISTICS" function which
merge statistics derived from "CLUSTER" and/or
"STATISTICS" function and “CLASSIFYPOINT" function
which is point classification by means of maximum
likelihood method.

R

As far as computation time is concerned,
"STATISTICS" and MERGESTATISTICS" functions can be
negligible inthe whole procedure of classification. i
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UCLUSTERY function needs longer time, however, the
increase of computation time of this function
caused by modification is negligible compared with
the total time of "CLUSTER" function. The problem
lies in "CLASSIFYPOINT" function, The increase of
computation time is up to 50% of the total time of
YCLASSIFYPOINTY function. However, this increase
of computation time can be reduced because the
subroutine for the main process of "CLASSIFYPOINT"
function in the modified version was written in
FORTRAN as compared with the original version
written in ASSEMBLER.

B. TEST RUN

In order to see the effect of this approach,
a test run was accomplished. The data used in this
study is a part of LANDSAT MSS data of scene 1321-
15595 collected on June 9, 1973 at 9:59 am. The
object area includes Monroe Reservoir and Blooming-
ton, Indiana., We selected these data for a test
run simply because these data has been studied for
many years as a standard data set for education
and program tests in LARS. Futhermore, some other
informations including ground truth data are also
available together with the data.

The ground truth data are such that more than
three hundred test areas of 3X3 points data are
assigned to five categories as urban, agricaltural
fields, forest, water and cloud. Therefore, after
classified the data into many classes, those
classes were grouped into those five categories.

Classification study was accomplished in
combination of supervised and unsupervised methods.
Moreover, the comparison of symmetric and non-
symmetric functions were accomplished on the
results of classifications in some different
numbers of classes,

Through this study, the following results
were obtained.

At first, this method can improve the
trainning field performance in supervised approach,
however, it does not give a remarkable effect in
unsupervised approach. The cause of this fact is
supposed to be in that each cluster does not
necessarily correspond to the actual pattern class,

Secondary, it gives more effect when the
number of pattern classes is small. When the
number of pattern classes is large, the standard
deviation of each class should be small. Therefore,
they makes little difference in the position of
decision boundary even though the shape of histogram
of a class is very anti-symmetric.

Finally, non-symmetric function often cut
the harf side of the feature space very sharply.
Therefore, it may happen that those data which
include more than two classes can be assigned to
a very different class,

V. APPENDIX

A. INTRODUCTION OF EQUATION (9)

The following equations are obtained on
reffering to equations (3) through (8).

%= B (-0 (22)

1:/(‘-2/&];%‘(01'-0}')+(Q21—0;0’y+0':) (23)

5= p-3p8 [Z (G -0 )e3 S (GE G 6)

- E(q-o;)(qﬁcr;) (24)

Here, let § and O be
$ =f,2—:(q-o;) (25)
o= (G0 (26)

then equation (22)-(24) are rewritten as
L=M-5 (27)
I pM-2p§ +%"‘5’ + o (28)
T Poapt§ 13 (2 §h0h)-2§ (ZSw2d) (29)

From (27) and (28) we obtain

I-I= o+ (Z§ (30)
or

o' 5,-Ir (2§ (31)
and from {(27)

M=T+3 (32)

By substituting (31) and (32) into (29) then we
obtain

5=B+1-3) § 435, (5-E-(5,-2H S (33)
(33) is rearranged as
(L-3)8° ~(5,-T1)§ ~(Z;-35,5,+25) =0 (34)

By reffering (25) and (26) we obtain

0;_=<7‘+J7-8€5 (35)

0F=0'-E3 (36)
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By substituting (31) we obtain

Gj={Z,—Zf+(1—%n)§’}”+ES (37)

G={T-2e -3 - S (38)
and

M= ):‘+ S (32)

B, SOLUTION OF EQUATION (9)

Standard deviations @) and Oy should be
positive, however, it never happens that both of
them will be negative at a time, because of (37)
and (38), Therefore, the product of 0; and @,
should be positive, That is

GG=52~(5-1S >0 (39)
$1<E272 &* (40)

where
¢*=5,-3 (41)

Moreover, we obtain

5 21-1)5" > ( 3n-1) 2 52
0-(5M-1)8 >0 =(gn-D 5= G

= Sy 00 (42)

Therefore, if the inequality (40) is satisfied it
is also guaranteed that both 01 and (,are real
numbers, .

Let £( §) be the left hand side of the
equation (34). That is

£(8) = (-3) § - 5231, (43)

where
Hy = Zy-3X, 2y+2 23, (44)

then
£1(§)=3(1-3)8 - §*  (45)

Let YA (A>0) be the maximum and minimum points,

N
+_ G

ool (46)

tn-=

and then,

_9 v 2 50
3(R=3) > ) (47)

Therefore, any & which satisfy (40) will be exist
between maximum and minimum points., Then in the
region

,2« 2 A
—7'[_—20'< S< EU' (48)

£(§) is a simply increasing function. Therefore,
the condition that the equation (34) has a solution
in the region can be expressed as

f(-/,éza-) £ /é&)(o (49)

247

13 < gy O° (50)

Inequality (50) gives the condition to satisfy
(40)., Therefore, when the condition {50) is not
satisfied we should define & in another way.

Here, we took the following definition.

§=1.28F for My<O
” (51)
S =-1.20 for M3>O0

The value 1.2 was chosen on reffering to the
coefficient of the right hand member of inequality

(40), That is
/-—2—=1.3236 . (52)
K2 oo .

Then ‘the inequality (50) was also changed as
M2 < 0.913 G4 (53)
so that it can match with the definition (51).

In other words, when (53) is satisfied & is
obtained by solving the equation (34), if not, §
is obtained from (51).
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