Reprinted from

Eighth International Symposium
Machine Processing of
Remotely Sensed Data
with special emphasis on

Crop Inventory and Monitoring

July 7-9, 1982

Proceedings

Purdue University
The Laboratory for Applications of Remote Sensing
West Lafayette, Indiana 47907 USA

Copyright © 1982
by Purdue Research Foundation, West Lafayette, Indiana 47907. All Rights Reserved.
This paper is provided for personal educational use only,
under permission from Purdue Research Foundation.
Purdue Research Foundation

PARALLEL PROCESSING CONCEPTS FOR REMOTE
SENSING APPLICATIONS

B.W. SMITH, H.J. SIEGEL, P.H. SWAIN

Purdue University/School of Electrical
Engineering
West Lafayette, Indiana

ABSTRACT
Previous research has suggested a specific SIMD
(Single Instruction stream - Multiple Data stream)

machine architecture for the application of paraliel pro-
cessing to remote sensing tasks. It is a large-scale mul-
timmicroprocessor structure which couid consist of as
many as 1024 processors. This type of architecture is
extremely well-suited to the execution of window-based
(e.g.. image correlation) and pixel-based (e.g.. maximum
likelihood classification) types of operations. The
analysis of 2 number of remote sensing data processing
techniques for implementation on a machine with this
architecture are discussed. This includes both the
design of parallel algorithms and the expioitation of
appropriate data structures.

I. INTRODUCTION

Multispectral initage data collected by remote sens-
ing devices aboard aircraft and spacecraft ar: relatively
complex data entities. Because of its mailtispectral
nature, vectors are used to represent the data. The exe-
eution of even the simplest classification algorithms may
require large amounts of computaticn time. Thus, in
order to allow complex classification algorithms to
beconie more feasible, special hardware to increase the
executicn speed is of interest.

Through the use of parallelism, the exercuilon time
of classification algorithms can be reduced. There are
several classes of parallel processing systems., Arn SIMD
(Single Instruction stream - Multiple Data stream) [1]
machine typically consists of a contrel unit, N proces-
sors, N memory modules, and an interconnacztion net-
work. The control unit broaccasts instructicas to ail of
the processors, and all active (enebled) procossors exe-
cute the samme instiruction al the same time. Iach active
processor executes the broadcast instruction on data in
its own associated memory module. The interconnzsction
network provides a communications facility {for the pro-
cessors and meraory modules. An MIMD (Multiple
Instruction stream - Multiple Data stream) [.] machine
typically consists of N processors and N :smories,
where each processor can follow an independ:iit instruc-
tion siream. As with SIMD architecture, there is a multi-
ple data stream and an interconnection network.

Fer many remote sensing tasks, all pizels in a given
image are treated in a similar fashion. This inplies that
the same numerical opcrations are done or a2l pinels

Thus, the same instructions are performed cn multiple
data sets. It would appear that SIMD machines are par-
ticularly well-suited to these tasks. Further, since
images can be as large as 65,536 pixels on an edge, a sys-
tem that has as many as 1024 processors would also be
well-suited for image processing tasks. Large scale
integration makes just such parallel systems nossible.

The applications of such a machine to image pro-
cessing tasks is the topic under consideration here. Sec-
tion II discusses a potential machine architecture. Sec-
tions III, IV, V, and VI discuss how such a system can be
applied to smoothing, maximum likelihood classification,
contextual classification, and image correlation, respec-
tively.

Ii. MACHINE ARCHITECTURE

The proposed SIMD architecture,
Multimicroprocessor Remote Sensing System (MuRSS)
is shown in Fig. 1. The system consists of N processing
units (PUs) numbered from 0 to N-1 and 2N+1 memory
modules numbered from 0 to 2N. Each PU will be a com-
monly available microprocessor, such as a 68000 [2]
equipped with a floating point unit. Four busses will be
connected to each PU. One bus to each will be used to
communicate with the contrel unit, while the remaining
three busses will be connected to as many as 28 64K-byte
banks of memory. Two of the three busses, and conse-
quently the associated memory banks, will zlso be con-
nected to adjacent PUs. Thus, the memory banks that
are "shared” can be used to store common data. This
eliminates the need for a more complex interconnection
structure. Memory contention is not a problem. The
only way contention can occur is if two PUs try Lo access
the same memory. This can not happen with this SIMD
system, since whenever PU i is using its 0 bus, PU i-1
must also be using its 0 bus (it cannot be using its 2
bus). The multiple banks of memory will allow the host
to load/unload data into/from half the banks, while the

PU operates on data from the other half, maximizing
overlap.

The control unit (CU) will be a special purpose pro-
cessor. It will be equipped with memory, in which it will
store its program, global data, the program to be broad-
cast to the FU, and its local variables. The amount of
memory is variable and is a function of cost and the pro-
cessor chosen for the CU.

The host will be assumed to be a comptuter such as

SRR 1982 Machine Processing of Remotely Sensed Data Symposium

520

an IBM-370 or a PDP-11 series machine. All support
operations, such as formating input and formating out-
put, will be performed by the host.

111, SMOOTHING ON A PARALLEL SIMD MACHINE.

Smoothing is a method of noise reduction for image
data. The measurement vector for each pixel is replaced
by the average of the measurement vector for that pixel
and the measurement vectors of the eight surrounding
pixels. Consider the following example, as shown in Fig.

R. z; 4, the measurement vector for pixel (i) is replaced
by:

Zyj = (Lo j1 Ty o1 T jog t

Zi-1,4 +.7.‘.,-__J-+Z.£+1_j+

i1t Fi gt Tiari01)/ 9

Thus, for each pixel, eight vector additions and one divi-
sion of a vector by a constant is required. Consider the
case where each measurement vector is 4-dimensional
and the image is I-by-J pixels. Smoothing the image on a
serial machine will require 8*I*J vector additions and I*J
divisions, translating to 32*I*J additions and 4*I*J divi-
sions.

If J is sufficiently large (> 2N+1) and a multiple of N,
the image can be divided into N columns J/N pixels wide
as shown in Fig. 3. This scheme is called striping and
has been discussed in [3]. Bach processor will process
one stripe. In order to process all pixels in a given stripe,
a processor will need to access one column of pixels
from each bordering stripe. This means that at least two
columns of data will have to be stored in shared memory.
For example, with a 512-by-512 image and 32 PUs, PU 0
will process columns 0 to 15, while PU 1 will process
columns 16 to 31, etc. Memory O will store column 0,
memory 1 will store columns 1 through 14, memory 2
will store columns 15 and 16, etc. Note that memories 0
and 2 could contain more columns of data. In general,
up to two rows of data must be stored in each shared
memory. The rest of the image is stored ia the local
memory banks. The total processing time associated
with an image is: 32*I*J/N additions and 4*I*J/N divi-
sions. Thus, the theoretical maximum speedup by a fac-
tor of N iz achieved.

If J is not a multiple of N, all PUs will process [J/ N |
columns, then J mod N PUs will have to process one
extra column of data. For simplicity, assume that
columns cannot be subdivided. Thus, some processors
will have to process a stripe [J/ N1 columns wide, while
other processors will have to process a stripe [J/ N
columns wide. If each column is J pixels wide, the total
processing time associated with a given image wiil be:

32¥*([J/NT)
4*+1*{([J/ N7)

additions

divisions

This represents an increase of at most 32* additions and
4*] divisions over the ideal case. The efficieancy of the
above implementation can be represented by tie ratio of
the time required for an ideal speedup to the actual
processing time [4]|. This translates to:

J/N
J/ N

The worst case efliciency is achieved when one processor
is rupning while the remaining processors are idled.
Mathematicaily, this is when the difference between J/N
and [J/ N7 is a maximum. For example, with N=1024
and an image with 4097 columns, this represents an
efficiency of B0OZ%, while for J=65537, this represents an
efficiency of 98.4%. The larger the image, the closer the
efficiency is to 100%.

Note that the efficiency is a function of the number
of columns. Processing rows instead of columus will
make the efficiency a function of the number of rows and
may allow N PUs to operate more efficiently.

An alternative to the above method is to allow a
column to be divided among PUs. Furthermore, some
processors will process [/%// NT pixels, while others will
process |/*// N]. This scheme is shown in Fig. 4, and is
called modified striping.

This time required to smooth an iniage using
modified striping is:

32*[I* / N7 additions

4+*[1%]/ N7 divisions

For the ideal speedup of N, the ceiling function would be
absent, thus the ratio of the ideal speedup to the actual
speedup becomes:

I*J/ N

1 I%/ N

For N=1024, and an image of size 1025-by-4097, the
efficiency is 99.99+%. This method, thus, leads to a
higher overall utilization of the PUs. Further, for images
greater than 2N-by-2N, the utilization is independent of
the orientation of the image, i.e, whether the image is
striped based on rows or columns.

If striping is done by columns, images smaller than
RN columns have not been considered, as they do not
have enough columns to utilize the full machine. Each
processor will have to store at least one column of data
in each of its shared memory banks. This implies that
there are at least two rows of data per processor. Multi-
plication of the two column minimum by the N proces-
sors yields 2N columns. If striping is done by rows, then
the argument is similar. To process small images, fJ/ ZJ
processors would have to be enabled, while the rest of
the processors were disabled for the entire task.

IV. MAXIMUM LIKELIHOOD CLASSIFICATION

Maximum likelihood classification (MLC) [5]
classifies each pixel independently or all others. Assume
that the input data can be described by a Gaussian dis-
tribution function [5]. Thus, the probability that pixel
(i.j) is in a given class wy, & O = {w,,wg, « * - &y }is:

1, o
—5i¥y ~M)T UK - K,

p{Xyiwe) = —
vk NEaba

1982 Machine Processing of Remotely Sensed Data Symposium

521

where X;; is the measurement vector for pixel (i.j), M, is
the mean vector for class k, £, is the covariance matrix
for class k. A pixel is assigned to a given class such that
p(X;; lwg) is maximized. It is possible to use a discrim-
inant function [5]:

A |02) = =]in|Ze |+ (X =ma) T2 (K =)

Maximizing this last discriminant function for X;; over 2
will yield the same result as maximizing p (X;; |wx) over
the same Q. The discriminant function is considerably
less complex to calculate than the probability, so discus-
sion is based on the discriminant function.

The calculation of —In|Zy | and Z7! is done once for
each information class and is negligible when compared
to the calculation of the discriminant function for each
class for each pixel in a given image. Again assuming X
is 4-dimensional, Xj;—m; can be done in four additions
per class per pixel. By utilizing the symmetry of %1,
(Xyj—ms)Ez 1(Xi —my) can be performed in 20 multiplies
and 9 additions for the four spectral band case. Thus,
the calculation of the discriminant function will require
20 multiplies, 15 additions, and one sign change per pixel
per class. Finally, for C class data, C-1 compares per
pixel will be needed in addition to the calculation of the
discriminant function. On an I-by-J image, classification
of all I*J pixels will require 20*[*J*C multiplications,
15*I1*J*C additions, and 1*J*(C-1) compares for a standard
serial processor.

Consider implementing the MLC on MuRSS. The CU
will broadcast class dependent constants, such as Iz}
and m; as part of the SIMD program. FEach pixel is
classified independently, thus there is no nead for any
inter-PU communication. Using the meodifiad striping
scheme to divide the I-by-J image, N PUs will be able to
perform an MLC

¥/ N

Tror 7 ny

times faster than a single PU. Further, since this opera-
tion requires no inter-PU data transfers, images as small
as N pixels can be processed without disabling PUs for
the entire operation.

V. CONTEXTUAL CLASSIFICATION

The '"class" associated with a given pixel is not
independent of the classes of adjacent pixels. Stated in
terms of a statistical classification framework, there
may be a better chance of correctly classifying a given
pixel if, in addition to the spectral measurements associ-
ated with the pixel itself, the measurements and/or
classifications of its "neighbors" are considered as well.
The image can be considered to be a two-dirnensional
random process incorporated into the classification stra-
tegy. This is the objective of "contextual classifiers"
[6,7], in which a form of compound decision theory is
employed through the use of a statistical characteriza-
tion of context. Recent investigations have demon-
strated the effectiveness of a contextual classificr that
combines spatial and spectral information by exploiting
the tendency of certain ground-cover classes to occur

more frequently in some spatial contexts than in others
(3,7.8,6].

The image data to be classified is assumed to be a
two-dimensional I-by-J array of multivariate pixels. Asso-
ciated with the pixel at "row i" and "column j" is the mul-
tivariate measurement n-vector X;;eR™ and the true
class of the pixel wyeQ =[c.>1. s ,oc} . The measure-
ment veclors have class-conditional dengities
f(X]wg) k=12..C, and are assumed to be class-
conditionally independent. The objective is to classify the
pixels in the array.

In order to incorporate contextual information into
the classification process, when each pixel is to be
classified, p-1 of its neighbors are also examined. This
neighborhoed, including the pixel to be classified, will be
referred to as the p—array. To classify each pixel, the
contextual classifier computes the probability of the
given observed pixel being in class k£ by also considering
the measurement vectors (values) observed for the
neighbor pixeis in the p-array. Specifically, for each
pixel, for each class in Q, a discriminant function g is cal-
culated. The pixel is assigned to the class for which g is
the greatest. Each value of g is computed as a weighted
sum of the product of probabilities based on the pixels in
the neighborhood. This is described below mathemati-
cally for pixel (i,j) being in class w,. (The description is
followed by an example to clarify the notation used.
Further details may be found in [3,7].)

witin= ¥ |77 wn}af(@ﬁ)
uijt:_(lp. _D' =1

where

X,eX;; is the measurement vector from the yth pixel
in the p-array associated with pixel (i,j)
t,8w; is the class of the yth pixel in the p-array
associated with pixel (i,j)

f(X,lw,) is the class-conditional density of X, given
that the yth pixel is from class o,

GP(wi) = G(w.0z, - -~ .wp) is the a priori probability

of observing the p-array w),wa, ' ' * .&p

Within the p-array, the pixel locations may be num-

bered in any convenient but fixed order. The joint pro-

bability distribution GP is referred to as the context dis-

tribution. The class-conditional density of pixel measure-
ment vector X given that the pixel is from class k is:

—licg 2 { +(X—m)T 1 -my)]
JX]k)=e ¢

where the measurement vector for each pixel is of size
four, X;! is the inverse of the covariance matrix for class
k (four-by-four matrix), m; is the mean vector for class
k (size four vector), "T" indicates the transpose, "log" is
the natural logarithm, and |Z,| is the determinant of
the covariance matrix. This is the same function as used
for the MLC [5].

Consider, as an example, the horizontally linear
neighborhood shown in Fig. 5, and assume there are two
possible classes: Qefa,b}. Then the discriminant function
for class b is explicitly (pixel (i,j) is the middle pixel):

- 1982 Machine Processing of Remotely Sensed Data Symposium

522

g5 (Xy;) = F (X11a)f (Xe|b)f (Xg|a)Gla.b.a)

I ((
+f (X1]a)f (X|6)f (X3]6)Ga b b)
+T(X1]b)f (Xe|b)F (X31a)G(b,b,a)
FF(X1[B)f (Xo|b)f (Xalb)G(b b ,b)

After computing the discriminant functions of g, and g,
for pixel (i.j), pixel (i.j) is assigned to the class which has
the larger discriminant value.

Consider the case where there is a nonlinear three-
by-three context array (neighborhood), as shown in Fig.
6. Here, for each g, there are many more products to
compute, each with more factors than the one-by-three
case. In general, for each g, there are (P! product
terms, each term having p+1 factors, where C is the
number of classes and p is the neighborhood size. All of
the calculations are done using floating point arithmetic,
It is the parallel implementation of contextual classifiers
that is under consideration.

The algorithm shown in Fig. 7 is a uniprocessor
implementation of the size three contextual ciassifier,
Let "hold(m,k)" be a two-dimensional array of size
three-by-C, ie,, 0=m<=2 and 1<k<C, "hold(crk)" is a
vector of length C containing the class-conditional den-
sity values ("compf's) for the pixel (i,j) ("er” is an abbre-
viation for center). "hoid(Ilt,k)” and "hold(rt.k)" are the
analogous vectors for the pixel (i,j-1) (the left neighbor)
and pixel (i,j+1) (the right neighbor), respectively. By
using this array to save the class-conditional densities,
each density (for a given pixel and class) is calculated
only once [9].

The complexity of the algorithm is proportional to
I*xj*C3 assignments, multiplications, and additions, and
I*J*C "compf” calculations. Typically, 10<C=<80 for the
analysis of LANDSAT data.

The algorithm can be extended for a non-linear con-
textual classifier with a neighborhood of size nine (as
shown in Fig. 8) [10]. The complexity of the algorithm
would have growth proportional to I*7*C? assignments,
multiplications, and additions. The number of "compf”
calculations would still be 1*J*C. In this case, "hold"”
would be a ({2*J)+3)-by-C array (assuming the neighbor-
hood window moves along rows). The (2*])+3 pixels
whose "compf" values are stored in "hold" are chosen to
make it unnecessary to perform redundant “compf” cal-
culations. In general, when classifying pixel /i), "hold"
has the "compf” values for pixels j-1 to J-1 of row i-1, pix-
els 0 to J-1 (all) of row i, and pixels O to j+1 of row i+1.
After the classification of pixel (i,j), the values for
(i+1,j+2) are stored and the values for (i-1,j-1) are
deleted, When the pixels on a new row are to be
classified, call it i, then the values for pixels (i’-2,J-3),
(i’'-2.J-R), and (I’-2,J-1) are removed and the values for
(I'+1,0), ('+1,1), and (i'+1,R) are stored. (This assumes
row i’ is classified after i’-1). Given this, the rest of
transforming the algorithm for the size nine square
neighborhood case is straightforward.

For the three-by-three window, data allocation and
timing analysis is analogous to that for smoothing. The
main difference is that for smoothing, only the raw pixel
data is shared. For the contextual classifier, the
"compf" values of the subimage edge pixels are shared
instead. The parallel processor version of the one-by-
three horizontally linear window is similar. Dther sizes

and zhapes of windows are bandled analogously.

V1. IMAGE CORRELATION ON A PARALLEL MACHINE

Image correlation, as described in [11], is used to
measure the degree of similarity between a match image
and an equal sized area of an input image. Typical
images can be at least 4096-py-4096 pixels, with match
areas on the order of 64-by-64 pixels. For the purposes of
this paper, images on the order of 65636-by-85536 pixels
will be considzred.

Let the symbols x and y denote single elements of
arrays X and Y, where X is the match image and Y is the
area of the input image under consideration (same
dimensions as X). Let M be the total number of elements
in the match area X. Define:

Sxx = (1/ M) (T z*=(32)?)

Syy = (1/ M) (Lzy~Lz Vy)

Syy = (1/ M)(Xy*~(Ly)?)
Exy = Sxy/ N SxxSyr

Sxy is the covariance of the match area with a portion of
the input area. Large positive values for Syy indicate
similarity between the match image and the input
image, while large negative values for Syy indicate simi-
larity between the negative of the match image and the
input image. Values near zero indicate little similarity
between the two images. Kyy is the linear correlation
coefficient of the statistics. Simplistically Kyy is a nor-
malized version of Syy in which Ryy = 1 indicates an
identical match, Kyxy = —1 indicates an identical match
with the negative of the input area, and Fyy = 0 indicates
ne correlation between the match area and the input
image. A correlation value will be computed for each
position in which the match image can fit into the R row
by C column input image.

The calculation of Rxy is dominated by the time to
compute Y,zy, Yy ., and »,y% Yz and },z° do not
change from input window to input window, and can thus
be pre-computed. For a match template with r rows and
¢ columns, each),zy and Y y® requires r*c multiplica-
tions and rc-1 additions.),y requires rc-1 additions.
These operations have to be done for each position of the
match template in the input image. Special methods of
computing Zyz and }:y can decrease the time require-
ments of thiz algorithm. Consider the following algo-
rithm for computing the sum of the pixel values () y's)
in each match template.

Assume that for input image Y the position of the
match area is defined by the coordinates of the upper
left hand corner of the match area. Define a vector
"colsum' [11] of length C as:

k+r—1
colsum (j) = 3, Y(i.j)
ik

where k is the row coordinate of the current portion of
the match area and 0<j<C. Let "SUM" be an R-r+1 by
C-c+1 array, where SUM;; is the sum of the pixels of the
input image for the match area position
(i.7), 0<i<R-r +1, 0<j<C-c +1.

1982 Machine Processing of Remotely Sensed Data Symposium

523

Initially, colsum is calculated for all C columns of
row 0. SUM(0,0) is formed by summing colsum(j)
(0=j=<c —1). This requires r*c multiplications and (r*c)-1
additions. SUM(0,1) is formed by subtracting colsum(0)
from SUM(0,0) and adding colsum(c) to the result. In
general:

SUM(0,5) = SUM(0,j—1)~colsum (j—1)
+eolsum (j +¢ —1)

After the processing of a given row is complete,
colsum(j) is updated for the next row by subtracting
Y(i§) from the old colsum(j) and adding Y{i+r-1j) to
the result. This changes the complexity for the calcula-
tion of the Y ¥'s to: 3c-1 additions/subtractions per tem-
plate position for the column 0 entries of all other rows,
‘and 4 additions/subtractions per template position for
all other template positions.

For a typical 64-by-64 match image, straight for-
ward computation of Zy requires 4095 additions per
match template position on the input image. This is the
same number of operations required per match template
position in row 0 of the input image. For template posi-
tions in column 0 of the other rows, 191 additions are
required. Computation of Zyz’s is similar to the compu-
tation of the Y y's.

Consider the application of MuRSS to this task. Each
PU will apply the serial algorithm to its assigned pixels.
Pixels will be assigned to PUs based on the vertical strip-
ing scheme. If a column of pixels lies in memory associ-
ated with bus 0 or bus 1 of PUi, then PUi is responsible
for the computation of the colsum and the analogous y*®
entries associated with that column. If the pixel in the
upper left hand corner of a window lies in memory asso-
ciated with bus 0 or bus 1 of PUi, then PUi is responsible
for the computation of that window. When PUi is per-
forming computations on its rightmost c-1 columns, it
uses the colsum values stored in its bus 2 memcry by
the previous computations of PUi+1 (recall that PUi+1s
bus 0 memory is PUi's bus 2 memory). Thus, at least c-1
colsum values and the corresponding y values must be
stored in memory associated with each bus 0.

For an R-by-C image and N PUs, the vertical stripi
scheme will assign each PU a subimage either R-by-[C/N
or R-by-[C/Nj. Thus, the total time required for the cal-
culation of the Y zy's is (R-r+1)*([C/Nj-c+1)*((r*c)-1)
additions, and (R-r+1)*([C/Nl-c+1)*r*c multiplications.
The total time associated with the calculation of the

Ty's is [(R-r)#((3%)-1)] + [([c/ N]—c +1)*((re)-1)]#

R-r)y*(TC/ N1 ~c)*4| additions. The time required t
calculate the Y,y®'s is similar to the time asscciated with
the calculation of the) y’s.

If C<N*(c—1), then c-1 columns of data cannot be
associated with each bus 0, thus the PUs cannot all be
_enabled. If R=N*(r—~1), the stripes can be horizontal
instead of vertical. In this case, r and ¢ are swapped, as
well as R and C.

VII. CONCLUSIONS

MuRSS, an SIMD architecture with as many as 1024
processors, was presented. It was shown that N proces-
sors in the SIMD mode of operation could perform vari-
ous image processing tasks almost N times faster than
one processor of the same type. Four tasks considered
were smoothing, maximum likelihood classification, con-
textual classification, and image correlation. The appli-
cation of the MuRSS to the tasks considered was dis-
cussed.

Through the use of the MuRSS SIMD architecture,
computationally demanding remote sensing processes
can be implemented efficiently. This will not only reduce
the computation time required to perform remote sens-
ing tasks, but will also allow the investigation of tech-
niques which may otherwise be considered infeasible.

REFERENCES
(1] M.J. Flynn, "Very high speed computing sys-
tems," Proc. JEEE, Vol. 54, pp. 1901-1090,
Dec. 198686.
2] MC68000, 16-Bit Microprocessor User's

Maonual, Motorola Inc., Austin, Texas, 1980.

(3] P.H. Swain, H.J. Siegel, and B.W. Smith,
"Contextual classification of multispectral
remote sensing data using a multiproces-
sor system," IEEE Trans. Geoscience and
Remote Sensing, Vol. GE-18, pp. 197-203,
Apr. 1980.

(4] 1.J. Siegel, H.J. Siegel, and P.H. Swain, "Per-
formance measures for evaluating algo-
rithms for SIMD machines,” IEEE Trans.
Software Engineering, scheduled to appear
July 1982,

(5] P.H. Swain and S. Davis, editors, Remote
Sensing: The Quantitative Approach,
McGraw-Hill Inc., New York, NY, 1978.

(6] J.R. Welch -and K.G. Salter, "A context algo-
rithm for pattern recognition and image in-
terpretation,” /EEFE Trans. Systems, Man,
and Cybernetics, Vol. SMC-1, pp. 24-30, Jan.
1971.

(71 P.H. Swain, S.B. Vardeman, and J.C. Tilton,
"Contextual classification of muitispectral
image data”, Pattern Recognition, Vol. 13,
pp. 429-441, Mar. 1981.

[8] J.C. Tilton, P.H. Swain, and S.B. Vardeman,
"Contextual classification of multispectral
image data: an unbiased estimator for con-
text distribution,” 1981 Symposium on
Muchine Processing of Remotely Sensed

Data, Purdue University, pp. 304-313, June
19R1

1982 Machine Processing of Remotely Sensed Data Symposium

(9]

[11]

H.J. Siegel, P.H. Swain, and B.W. Smith,
"Parallel processing implementations of a
contextual classifier for multispectral re-
mote sensing data", Proc. 1980 Machine
Processing of Remotely Sensed Data Sym-
posium (IEEE Catalog No. B0 CH 1430-8
MPRSD), pp. 19-29, June 1980.

B.W. Smith, H.J. Siegel, and P.H. Swain,”
Contextual classification on a CDC Flexible
Processor system'", Proc. of the 1981
machine Processing of Remotely Sensed
Data Sympoasium (IEEE Catalog No. 81 CH
1430-8 MPRSD), pp. 283-288, June 1981.

L.J. Siegel, H.J. Siegel, and A.L. Feather,
"Parallel processing approaches to image
correlation,”" IEEE Trans. Computers, Vol.
C-34, pp. 20B-217, Mar. 1982.

cu

PUO PU1 PU2

MEMO MEMT HEM2 MENA3 HEHh MEMS

MEN6

Fig. 1 MURSS proczssor/memory arrangement

(i-1,j-1)] (i-1,]) (i-1,+1)
(i9.j_]) (ivj) (i:.j'*])
(i+1,5-1)] (i+1,5) (i+1,j+1)

Fig. 2 Pixels used in the caslulatinn of

pixel (i,j) whan smoothing i imagoe,

J/N J/N J/N J/N
Fig. 3 Striping scheme of dividing an I-by-J
1mage among N PUs.
1J/N 1J/N 1J/N 1J/N
Fig. 4 Tig

iodified striping scheme of dividing
an T=by-J image amongy M PUs.

(1,3-0f €i53) [(7,3+9

Fig. 5 Linear neighborhood of size three.

(i-1, | (i-1,1 (-1,

-0 J+1)
(i, (i, (i,
-1) j+1)

(i+1,] (i+1, | (i+1,
=1 | J) j+1)

Fig. 4 Non-linzar neighborhood of size

nine.

1982 Machine Processing of Remotely Sensed Data Symposium

525

Main Loop
for i = 0 to I-1 do /* row index */
for k =1 to C do /* for each class */
for m = 0 to 2 do hold(m,k) = compf(i,m,k) /*cols.0-2*%/
1t = 0 /* hold(1t,k) is left neighbor */
cr =1 /* hold{cr,k) is pixel being classified */
rt = 2 /* hold(rt,k) is right neighbor */
for j =1 to J-2 do /* column index */
value = -1; class = =1 /* max "g" and class */
for k =1 to C do /* for each class */
current = g(1t,cr,rt,k)
if current > value /* compare with max */
then value = current; class = k
print pixel (i,j) is classified as "class"
if j # J-2 then /* update hold pointers */
tp = 1t; 1t = ¢cr; cr = rt; rt = tp
for k =1 to C do /* compf's for next col */
hold{rt,k) = compf(i,j+2,k)

Discriminant Function Calculation
function g(1t,cr,rt,k) /* for pixel cr, class k- */
sum = 0 /* initialize sum, used to accumulate g */
for r=1to Cdo /*all classes for pixel (i,j-1) */
for g =1%o Cdo /* all classes for pixel (i,j+1) */
if G6(r,k,q) # 0 /* do not multiply if G=0 */
then sum = hold(1t,r) * hold(cr,k)
* hold(rt,q) * G(r,k,q) + sum
return (sum) /* sum contains value of g(1t,cr,rt,k) */

Class-Conditional Density Calculation

function compf(a,b,k) /* for pixel (a,b), class k */
x = Afa,b) /* x is the pixel (a,b) measurement vector */
expo = -[1og[Zk! + (x-mk)Tzil(x-mk)]/z

return (e®*P%) /* return value of f(A(a,b)|k) */

Fig. 7 Uniorocessor version of contextusl
classification algorithnm,

B 1982 Machine Processing of Remotely Sensed Data Symposium
526

