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MULTIDIMENSIONAL EDGE AND LINE DETECTION
BY HYPERSURFACE FITTING USING BASIS
FUNCTIONS

CeB. CHITTINENI

Conoco Inc.
Ponca City, Oklahoma

ABSTRACT

This paper considers the problem of fitting
hypersurfaces to the multidimensional picture
function for edge and line detection. The multi-
dimensional greytone surface is expanded as a
weighted sum of basis functions. Using multidi-
mensional orthogonal polynomial basis functions,
expressions are developed for the coefficients
of fitted hyperquadric and hypercubic surfaces.
Assuming noise is Gaussian, statistical tests
are devised for the detection of significant
edges and lines. For directional edge and line
detection, parameters of the fitted surfaces are
obtained under rotation of the coordinate system.
Direction isotropic properties of the fitted
surfaces are derived. For computational effi-
ciency, recursive relations are obtained between
the parameters of the fitted surfaces of succes-
sive neighborhoods. Furthermore, experimental
results are presented by applying the developed
theory to multichannel Landsat imagery data.

I. TINTRODUCTION

Edge and line detection is an important
operation in a number of image processing appli-
cations such as scene analysis, mapping of linea-
ments from remotely sensed data (example, Landsat
data) to aid geological ground surveys, detection
of seismic horizons in the automation of geo-
logical interpretations, etc. The digital pic-
ture function in general is a sampling of the
underlying reflectance function of the objects
in the scene with noise added to the true func-
tion values. The edges or lines refer to the
places in the image where there are jumps in the
values of the function or its derivatives.

A variety of operators1 are proposed in the
literature for the detection of edges and lines
by fitting a surface to a picture functiou in
the neighborhood of each image point and taking
the derivatives of the function at that point.
Most of these operators work on single band image
and the selection of thresholds is a difficult
task. Recently Haralick? introduced the noise
term and devised statistical tests for the

detection of significant edges by fitting a plane
in the neighborhood of a point for a single-
channel image.

Several authors3~5 treated the surface fit-
ting using an orthogonal basis of two dimensional
functions. O'Gorman3 used the two-dimensional
walsh functions, Hueckel% used the polar version
of the orthonormal Fourier basis and Haralick?
used the orthogonal polynomials. All these op-
erators work on a plane or on a single band
image.

In multispectral images such as those ac-
quired by Landsat, different objects respond
differently in different bands and hence it is
advantageous to use information from all the
bands in edge and line detection.

Recently Morgenthaler and Rosenfeld® gen-
eralized the Prewitt! operators to n-dimensions
by fitting a hyperquadric surface. However the
noise is not introduced into the formulation.

It is the purpose of this paper to develop the
multidimensional edge and line detection theory
by fitting a hypersurface to the picture function
in the neighborhood of an image point using basis
functions. Also, statistical tests are devised
for the detection of significant edges and lines
and the properties of the operators are studied
for rotational invariance. A simple thinning
algorithm is proposed for thinning the detected
significant edges and lines, and experimental
results are presented.

II. HYPERSURFACE FITTING USING
ORTHOGONAL BASIS FUNCTIONS

Let X = (xg %] ... x3)T be a point in the
n-dimensional space. Let rg be a hyperrectangular
region. Without loss of generality, we choose
our coordinate system so that the center of the
region is at the origin. Because of the symmetry
in the chosen coordinate system, we can write

Ix; =0 for Vi . (2-1)

Xi€rg

1982 Machine Processing of Remotely Sensed Data Symposium

245




Let {8;(X), 0 <i <N} be a set of n-dimen-
sional orthogonal basis functions defined over
the region rg. Let f(X) be the digital picture
function. Let g(X) be an estimate of f(X) and
is estimated as a weighted sum of the basis func-
tions. That is

g(X) =
i

aj; 8;(X) (2-2)
0

M=

where {ai, 0<i< N} are a set of coefficients.

The total squared estimation error, €2, can be
written as

€2 = 3
Xerg

2
(£(x) - g(x)) . (2-3)

Using the orthogonal properties of the basis
functions, from equations (2-2) and (2-3), the
coefficients aj that minimize €2 can be obtained
as

b} £(X) 8;(X)
a; = 2EX0 . (2-4)
s $;2 ()
Xerg

From equation (2-4), it is seen that the
masks that estimate the coefficients aj are or-
thogonal since S;(X) are orthogonal. Let the
picture function f(X) can be written as

£(x) =
i

a; 5i(0 + n(xX) (2-5)
0

[ e B

where N(X) is a noise term and is assumed to be
Gaussian with zero mean and variance o2. The
noise n(X) is also assumed to be independent
from pixel to pixel. Putting equation (2-4) in
equation (2-5) yields

aj = o + 2 NX) 8i(X) (2-6)
Zs;2 (x)

From equation (2-6), it is seen that the
estimates aj are unbiased. The variance of the
estimates aj are given by the following:

2
— . (2-7)
I s;2(x)
Xerg

Var(aj) = E (aj - o;)2 =

Since n(X) is normally distributed, the
coefficients aj are also normally distributed.
For { # m, we get

E[(az - og) (ap - qm)] =

% 8g(X) $p(X)
X 0. (2-8)

(2 5g2(x)) (Z sp%(x)) )
X X

Since aj are normally distributed, from
equation (2-8), aj are also independent. The
total squared error, e?, can be written as
follows:

N
2 =3 rRX - £ (a3 - 02 (5;2(x)) . (2-9)
X i=0 X

Since n(X) is normally distributed with
zero mean and variance 02, the quantity
(Z nZ(X)/02> is distributed as a chi-squared
X

variate with Z(1) degrees of freedom. Since aj

X N
are independent normals, < £ (a3 - a;)?
i=0
(z Siz(X))/0%> is distributed as a chi-squared
X

variate with (N+1) degrees of freedom. There-

fore, (€2/02) is distributed as a chi-squared

variate with (Z(1) - (N+1)) degrees of freedom.
X

From this it follows that to test the hypothesis
that the coefficients agj, i =1, 2, **-,
m (m < N) are in fact zero, we use the ratio

m
< I oay I si_ (x)> /m
pozl 77 X 7 (2-10)
e2 / (Z(1) - (n+1))
X

which has F distribution with [m, (Z 1 -(N+l))]
X

degrees of freedom and reject the hypothesis for
large values of F.

ITI. DISCRETE ORTHOGONAL
POLYNOMIALS AS BASIS FUNCTIONS

0 < j < Mj| be a set of discrete orthogonal poly-
nomials on'Xj, 1 < i <n. The set of n-dimen-
sional basis functions {SQ(X), 0< < N}, can

be constructed using one-dimensional discrete
orthogonal polynomials Pjj(xj) as follows.

Let ir be the domain of xj. Let [{Pii(Xi),

1982 Machine Processing of Remotely Sensed Data Symposium

246




[{PIO(XI) Pog(x3) «+- Pnolxp)ls vy
{P11;(x1) Poi,(xp) ...pninun)}] (3-1)

For n = 0, the discrete one-dimensional
orthogonal polynomials can be written as

n .
Ponp(x) = FULI I a2n,2(n-i) xZ(n—l) (3-2)
: i=1
Pon+1(x) = x2otl
n
2(n-1i)+1
‘21 an+l,2(n-i)+l X (n=i) (3-3)
1=

where P,(x) is a polynomial of degree n, all the
exponents of x being even or odd with n. From
equation (3-3), we get

Po(x) = 1, P1(x) = x . (3-4)

The discrete orthogonal polynomials can be
recursively generated using the following
theorem.’

A. THEOREM 1
The discrete orthogonal polynomial set

{P(x), 0 <k <n} satisfies the relationship
given in the following:

Pr(x) = x Pp_1(x) - CoPy_3(x) (3-5)

TxPr_1(x) Pr_2(x)
where Cy = X 5 . (3-6)
§ Py-2(x)

Let Mik = Zx?, be the kth moment of x; over
the domain Xj. A few discrete orthogonal poly-

nomials constructed using equations (3-4), (3-5),

and (3-6) are given in the following:

Pio(xi) =1, Pi1(xj) = xj

2 Hi2
Pio(x;) = x, - ——
1224 i~ wio

Pi3(xi) = x} _ Mi4

.. (3-7)
pig i

IV. FITTING OF HYPERSURFACES USING
DISCRETE ORTHOGONAL POLYNOMIALS

This section concerns with fitting of hyper-
quadric and hypercubic surfaces to the picture
function in the neighborhood of an image point.
Also, statistical tests are developed for the
detection of significant edges and lines.

A. HYPERQUADRIC SURFACE
In terms of one-dimensional discrete ortho-

gonal polynomials, the n-dimensional hyperquadric
surface can be written as follows:

n n
g(X) = ag + I ajPi1(xj) + I ajjPia(xj) +
i=1 i=1
n
I ajj Piixi) Pjilxy) . (4-1)
i,j=1
i<j

Let rg be the hyperrectangular neighborhood
of the image point under consideration. Let the
coordinate system be positioned at the center of
the rg region. From equations (2-4) and (4-1),
the coefficients a's, that minimize the sum of
squares of errors, are given in the following:

L f(x) I xixj £(X)
a0 = LAt 1< i,j<n
I M J £ (xyx3)2 i< j
rQ ro
T oxy £(X)
r
aj = —9————5—-* ) (4-2)
I x.
1
ro

I Pia(x;) £(X)

o :
aj; = ———s——— , 1<i<n.

2
P (x;)
ro
In terms of the coordinates (xj, X2, ...,

Xp), the hyperquadric surface can be written as
follows.

n
g{x) =bg + I bixj +
i=]
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From equations (4-1), (4-2), and (4-3) the
a's and b's are related as follows:

s Uiz -
bgp = ag - 2 ﬁ%— ajj , bjj=ajj 1<i,j<n
i=1 "i0 i< j

bi =aj , bj; =aj; , 1<i<n. (4-4)

It is seen that the solution that is ob-
tained for the gradients by fitting the hyper-
quadric surface is the same as that would have
obtained by fitting the hyperplane. However,
there is a change in the constant term.

Since the coefficients a's of equation (4-2)

are unbiased, the coefficients b's of equation

(4-3) are unbiased. The variances of b;, biji,

and bjj are given by the variances of aj, aji,

and ajj, respectively. Since the a's are inde-
pendent and the noise N(X) is independent from

pixel to pixel, the variance of by is given by

the following7:

n . 2
Var (bg) = Z_%TT +Z (5%%)
i

i=l

I gy -5
L Pi5(xy)
The Laplacian of equation (4-3) at the cen-
ter of the region rg can be written as
n | n
L= I 82g =2 I bj; . (4-6)
=1 9x;? i=
X=0

i

From equations (2-6), (4-4), and (4-6), it
is seen that the Laplacian is unbiased and its
variance is given by

Var (L) = 402 ' 1 . =)

i=l I Pig(xi)
XerQ

To test the hypothesis that the Laplacian
is zero, we form the ratio

e =]

‘0 2 n 1
i=1 i=1 I P, (x;)
i2
XErp
F = 5
x(D - (N+l)> (4-8)
which has an F-distribution with (1, 2l -(N+1))

X
degrees of freedom and reject the hypothesis for
large values of F. Equation (2-10) can be used

to test whether the gradients bj, 1 < i < n are
zero. The square of the magnitude of the gradi-
ent is given by

n / 2' n 2
ar = T <a_s_> )
x=0 -

i=1 \9%i

From equations (2-6), (4-2), (4-4), and
(4-9), the expected value of the gradient can be
obtained as

—1—2. (4-10)
1 L xj
Xerg

E [gr] =
1

a;2 + g2
i

[ =]
—
LU N B~

Thus it is seen that the gradient is biased.
B. HYPERCUBIC SURFACE
In terms of one-dimensional discrete ortho-

gonal polynomials, the n-dimensional hypercubic
surface can be written as follows:

n
g(X) =ag + £ aj Pij(x;) +

i=1
n n
2 oajji Piglxj) + I ajj Pij(xj) Pjilxj) +
i=1 i,3=1

i<j
n n
£ ajji Pi3(xi) + I ajjij Pia(xy) Pjilxj) +
i=1 i,j=1

i#j

n

I ajjk Pi1(xi) Pj1(xj) Prilxp) . (4-11)
i,j,k=1
i<j<k

Positioning the coordinate system at the
center of the region, the estimates for the co-
efficients a's that minimize the sum of squares
of errors between the observed and estimated
greytone values are given by equation (2-4). 1In
terms of the coordinates (x], %2, ..., X,), the
hypercubic surface can be written as follows:

n n 2
g(X) =bg+ I bjxj+ I bjj X, +
i=1 i=1
n
L n 3
i,j=1bjj xj xj + .Z biji x; *+
i<j i=1
n y n
L bijjxjxj+ 2 bijk Xi Xj Xk . (4-12)
i=1 i,3,k=1
i#] i< <k
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From equatioms (3-7), (4-11), and_(4-12),
the a's and b's can easily be related.

From equations (3-7), (4-2), (4-4), and
(4-12), it can easily be seen that the solution
for the second derivatives of the fitted surface
evaluated at the center of the region rg are the
same either by fitting hyperquadric or hypercubic
surfaces. However, it is noted that the constant
term and gradients differ. Similar conclusions
can be drawn for higher order surfaces.

The means and variances of the first and
second derivatives of the hypercubic surface
evaluated at the center of the region are ob-
tained in the following. Since a's are unbiased,
bi's, and bjj's are unbiased. The variance of
bii's is given by the variance of ajj's of equa-
tion (2-7). The variance of bj's can be obtained
as

Var(b;) = o2 -——~%———— +
ZPi2(x4)
2 n 2
Wiy 1 s 3 M2
2 2 il 12
i, = Pi3(xy) It Hjo
1
1 . 1<i<n (4-13)

2 2
z PjZ(XJ) .7 (xi)

The Laplacian is unbiased and its variance
is given by equation (4-7).

V. PARAMETERS OF THE HYPERSURFACES UNDER
ROTATION OF THE COORDINATE SYSTEM

Very often, such as in the mapping of linea-
ments from remotely sensed data, it is required
to obtain the directional edges and lines. It
is the purpose of this section to derive expres-
sions for the parameters of the fitted surfaces
when the coordinate system is rotated and obtain
variances for the derivatives of the fitted sur-
faces evaluated at the center of the region.

Let X = (X[, X2, +.-; Xp)T be a point in
the n-dimensional space referred to the original

coordinate system, and let Y = (y1, y2, .-+
yn)T be the corresponding point referred to the

rotated coordinate system. Let D be the ortho-
normal rotation matrix. Then we have

X =DY . (5-1)

Let g(X) be the estimated greytone surface
expressed in terms of original coordinate system,
and let it be g(Y) when expressed in terms of

rotated coordinate system. Since D is an ortho-
normal matrix, we have the relationships

pT = Dp-1 and DTD = DDT =1 . (5-2)

A. HYPERQUADRIC SURFACE

From Equation 5-1, the coordinates xj can
be expressed in terms of the coordinates y; and
the elements of matrix D as

n
Xj = Z dijyj» 1<i<n. (5-3)
i=1
The hyperquadric greytone surface, when

expressed with respect to the rotated coordinate
system, can be written as

n
g(Y) = Co + ) Ciyi +
i=1
n n
Uil 1 ciivivs (5-4)
iiyy ijyiyj -
i=1 i,j=1
i<j

Using Equation 5-3 in Equation 4-3 and com-
paring the coefficients of the resulting expres-
sion with that of the ones in Equation 5-4 yield

n
Cop=bg , C{ = ) bgdyi ,1<i<n
g=1
n n
2 .
Cii = L baedy; * | Dbendgidpi » 1<i<n
2=1 2 ,m=1
2 <m
(5-5)
n n
Cij =2 ] bpedgidpj + )  bam(dgidpj + dgjdmi)-
=1 2ym=1
2 <m

Since the coefficients b's are unbiased,
the coefficients c's also are unbiased. The
variances of Cj and Cjj are given by the
following:
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n
var(cy) = @2 | dii . ——l—i— (5-6)
=1 (z XZ)
L Xerp
[n
var(ciji) =02 | ] dzi 21 +
_ P, (xp)
=1 22
- XE€rg
n
2 .2 1
dgy.d”., + ———= 1| . (5-7)
2 Limi g (xlxm)z
2, m=1 Xero
2 <m -

Since sum of squares of errors of fitted
surface is independent of rotation in the coordi-
nate system, statistical tests similar to Equa-
tion 4-8 can be set up to test the hypothesis
that the estimated coefficients C; and Cj; are
zero for directional edge and line detection.

For j # k, the covariance of Cj and Ck can
be expressed as

cov(Cj,C) =
j n n 5
X X,
o? Z Z dp, jdmk -———E—XLEL—E— . (5-8)
[2=1 o € x) @ x)

When the size of the neighborhood is the
same in x) and xp coordinate axes, from Equa-
tion 5-8 it is seen that the coefficients Cj and
Cx are independent when j # k.

B. HYPERCUBIC SURFACE
The hypercubic greytone surface, when ex-

pressed with respect to the rotated coordinate
system, can be written as

=}
=]

2
g(¥) =Co+ ] Ciyi + | Ciiyj +

i=1 i=1
n n
3 2
2 Cijyiyj + z Ciilyi + X Ciijy;yj +
i,j=1 i=1 i,j=1
i< j i#j
n
) CiikYiviYk - (5-9)
i,j,sk=l
i<i<x

Using Equation 5-3 in Equation 4-13 and
comparing the coefficients of the resulting ex-
pression with that of the ones in Equation 5-9,
expressions for the c's can easily be obtained
in terms of the b's and the elements of the rota-
tion matrix D.7/

Since the coefficients b's are unbiased,
the coefficients c's are also unbiased. The
variances of Cj and Cji, the first and second
derivatives of the hypercubic surface evaluated
at the center of the region rg, are given in the
following:

n
var(c) = [ a2« var(vy) (5-10)

r=1

where var(b,) is given by Equation 4-15. The
var(C;;) is given by Equation 5-7. Since sum of
squares of errors of fitted surface is independ-
ent of rotation in the coordinate system, statis-—
tical tests similar to Equation 4-8 can be set

up to test the hypothesis that the estimated
coefficients Ci{ and Cjj are zero for directional
edge and line detection.

VI. DIRECTION ISOTROPIC PROPERTIES
OF THE DERIVATIVES

In this section, we show that some functions
of the partial derivatives of the n-dimensional
function are invariant under rotation of the
domain of the n-dimensional function. Let H be
the orthonormal rotation matrix, where

Y = HX . (6-1)

From Equations 5-1 and 6-1, it is seen that
H = D-l. Let g(X) be the greytone surface ex~
pressed in terms of original coordinates xj and
g(Y) be the greytone surface expressed in terms
of rotated coordinates yj. We shall now have
the following results:

A. THEOREM 2

The magnitude of the gradient of the n-di-
mensional greytone surface is invariant under
rotation of the coordinate system.

Proof: See Reference 7.
B. THEOREM 3

The Laplacian of the n-dimensional greytone

surface is invariant under rotation of the coor-
dinate system. That is,

n n

3% _ 7 g -
¥ 2 ) 292 " (6-2)
i=1 i=1
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Proof: See Reference 7.
C. THEOREM 4

The sum of squares of second-order partial
derivatives of n-dimensional greytone surface is
invariant under rotation of the coordinate sys-
tem. That is,

n ) 2 n-1 n 5 2

;2N Loy g (3% \ .

=\ 9x3? . \ 3%i9%j

i=1 i=1  j=i+l

n ) n-1 n ) 2

I (E5)«2 1 1 (%) ¢
_ \3vi 313y

i=1 i=1  j=i+l

Proof: See Reference 7.
D. THEOREM 5

The sum of squares of third-order partial
derivatives of n-dimensiomnal greytone surface is
invariant under rotation of the coordinate sys-—
tem. That is,

i,j,k=1 i,j,k=1

Proof: See Reference 7.

Proceeding in a similar manner, it can be
shown that the results similar to Equations 6-3
and 6-4 hold good for higher-order partial
derivatives.

VII. RECURSIVE RELATIONS BETWEEN THE COEFFICIENTS
OF FITTED SURFACES OF SUCCESSIVE NEIGHBORHOODS

In multidimensional edge and line detection,
each image point is processed by fitting a hyper-
surface to the greytone surface in a hyperrec-
tangular region having the image point at its
center. Hyperrectangular regions of neighboring
image points overlap. The computational effi-
ciency can be considerably improved by relating
the coefficients of fitted hypersurfaces of
neighboring regions in terms of greytone function
values in the nonoverlapped region.

. 23g  \? c 3%y )
) s ) = L somacie—) . (6-4)
dx{9xj0xK 3yidy;dyk

Consider a three-dimensional hyperquadric
surface. Let the image points be successively
processed in the direction of coordinate axis xj.
Let Ry} and Ry be the hyperrectangular regions of
successive image points. From Equations 4-2,
4-3, and 4-4, it is seen that the denominators
of the coefficients of the fitted surfaces are
independent of the picture function and depend
only on the sizes of the neighborhood regions.
Consider only the numerators of the coefficients.
Let them be represented in the region Rl for & =
1, 2 as

o) = & £(X),
XERY,
ci;(0) = T xixj £(X) , 1 i,j 3
XeRy, i<
ci(v) = 1 x; £(X) , ¢i;(Q) =

XeRy,

I Pi,(x) £(X) , 1<1i<3. (7-1)
XeRg

Let N be the size of the neighborhood in
the xp—-coordinate direction, and let it be odd.
Let N2 = N2/2 and be truncated to an integer
value. Let fg(x],x2,x3) be the greytone function
in the region Ry, & =1, 2.

In computing the coefficients of the fitted
hypersurfaces in each neighborhood, the coordi-
nate system is positioned at the center of the
neighborhood. The values that the variable xj
takes in each neighborhood are (-Np2, -Ngz + 1,
weey 0, ..., N92 - 1, N22). The greytone func-
tions £1(X) and £2(X) of successive neighborhoods
are related as follows:

f1(x1, -N2 + i, x3) =
fy(x1, -Nog + i - 1, x3) . (7-2)
i=1,2, ..., Np -1

Let rj3 be the domain of x}, x3 over the
hyperrectangular region. Let us define the fol-
lowing variables over the domain of x), x3:
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V1

81

I

1Y)

A2

g1

€2

n

nz

13

r13

r13

ri3

r13

r13

r13
= I
r13
= I
r13
= I
13
= I
. r13
= I
r13

£1(x1,-Npg,x3)
£2(x1,N22,x3)
x1£1(x1,-N22,x%3)
x1£2(x1,N22,x3)
x3f) (x),~N92,%x3)
x3f2(x1,N22,%x3)
xlzfl(xl,-N22,X3)
x12£2(x},N22,x3)
x32£1(x1,-N22,%3)
x32£5(x1,N22,x3)
x1x3£) (x1,-N22,x%3)

x1x3f5(x],N22,%3) .

(7-3)

In terms of the variables of Equation 7-3,

the coefficients c's of the hyperquadric fitted

surfaces in regions R} and Ry are related as

follows:

Cco(2) =

c31(2)

Co(2) =

C3(2)

c11(2) =

C22(2)

— =~ N
(uzo

C33(2) =

252

Co(1)

ci(1)

Cy(1)

c3(1)

c11(l)

C22(1)

2 -
22

C33(1)

VI + w2

81 + &2

Co(1) + (Npg + 1) v; + No2 V2

Ty + T

- A1 ¥ Ay - E%% (-vy +

2 Ca(1) + cg(l) +

2 Ngo - {) + V2 <§§2 -

u32
- + - 22 (~yp +
E1 + &2 130 1

v2)

u22
H20

v2)

C12(2) = C12(1) - C3(1) + (Ngg + 1) § + Ny2 &
€13(2) =cC13(1) - m + m

Cp3(1) - ¢c3(1) +

C23(2)

(Ngg #+ 1) T3 + Nop g . (7-4)

Using Equation 7-4, the coefficients of the
fitted hyperquadric surface of region Ry can be
computed in terms of the coefficients of the
fitted hyperquadric surface of region R} and the
greytone function values over the domain of xj,
x3 when xp = -Np2 and Nz2. In processing the
image points along coordinate axis x», the vari-
ables of Equation 7-4 are computed for each xj.
To process the neighboring plane of data by mov-
ing along coordinate axis x), recursive relations
for the variables of Equation 7-3 can easily be
obtained.’

VIII. EXPERIMENTAL RESULTS

Some results are presented in this section
applying the theory developed in the paper for
the processing of a four-channel image of an
Australian scene acquired by multispectral scan-
ner aboard the Landsat. The size of the image
is 512 x 512. Figures 8.la and 8.1b are the
Landsat Bands 4 and 7, respectively. It is seen
that the details in the image vary from band to
band, and different bands in general emphasize
different features.

The gradient at every pixel is computed by
fitting a hyperquadric surface over a neighbor-
hood of size 7 x 7 x 4 and using information
from all the four bands. In using the F-test
for the detection of significant edges, 95 per-
cent confidence level is employed. Figure 8.2a
is an image that shows the significant edges.
Figure 8.2b is an image that shows the signifi-
cant directional edges at an angle of 45 degrees
to the direction of x7 axis in counterclockwise
direction.

In general, as the neighborhood moves along
the direction of the gradient, the edge magnitude
starts at a low value, reaches its maximum, and
then drops off to a low value. It is desired to
locate the peak of the edge profile. The fol-
lowing algorithm is employed for thinning the
detected significant edges. It uses the thresh-
olded gradient magnitude and gradient direction
of the fitted surface at the center of the neigh-
borhood. The measure of gradient magnitude is
taken to be the computed F-value if the computed
F-value exceeded the critical F-value. Other-
wise, it is set to be zero.

The neighboring pixels along a direction
normal to the direction of the edge are disquali-
fied from being candidates for the edges if the
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Figure 8-1a. An Australian Scene in Landsat Band 4 (512 x 512 Pixels)
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Figure 8-4. Detected Significant Lines at 95 Percent Confidence Level Figure 8-2b. Directional Gradient Magnitude Image Thresholded at
95 Percent Confidence Level
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Figure 8-3. Thinned and Thresholded Gradient Magnitude Image Figure 8-2a.! Gradient Magnitude Image Thresholded at 95 Percent

Confidence Level
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following conditions are satisfied: the magni-
tude of the gradient at a pixel is larger than
the magnitude of the gradients of its neighbors,
and the direction of the gradients of the neigh-
bors is within some allowable range from the
direction of the gradient at the pixel under
consideration. Figure 8.3 is the thinned magni-
tude gradient image using the above criteria.

Figure 8.4a is an image obtained by using
second partial derivatives of hyperquadric sur-
face over a neighborhood of size 7 x 7 x 4. The
confidence level employed in the F-test is
95 percent. From Figures 8.1 and 8.4, it is
seen that the significant lines in the image are
extracted.
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