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I ABSTRACT

Landsat-D will have a new higher
resolution imaging system in the Thematic
Mapper instrument. The higher resolution
increases the demands on the accuracy
needed by the ground processing in cor-
recting for geodetic errors due to inter-
nal misalignments and uncertainties in the
knowledge of spacecraft ephemeris and
attitude. The Thematic Mapper will also
process longer imagery intervals than
previous missions. To accomplish the
required correction a recursive distortion
estimator (Kalman filter) was adapted for
use on Thematic Mapper imagery. This
method estimates a minimum variance space-
craft state error vector for known
initisl covariance of the elements of that
vector and known image noise.

The recursive distortion estimator
was tested with various spacecraft models
using a simulation of real world state
vector dynamics. The density of control
points needed to meet specified geometric
correction requirements was determined as
a function of imagery interval length and
control point measurement error.

ITI THE LANDSAT-D SYSTEM

The Landsat-D satellite is a contin-
uation of the Landsat series of satellites
which for many years have provided useful
information for monitoring the earth's
resources. The new Landsat, though,
presents a significant improvement over
previous Landsats. It carries a four-band
Multispectral Scanner (MSS) and a Thematic
Mapper (TM) imaging instrument designed
to provide better spatial and spectral
resolution than MSS. The attitude con-
trol capability of the Multimission
Modular Spacecraft (MMS) has also been
improved in both pointing accuracy and
stability. 1In addition, Angular Displace-
ment Sensors (ADS) mounted on the three

TM axes will provide information on the
"jitter" effects in the imagery.

General Electric is responsible for
the Landsat-D spacecraft integration and
test (flight segment) and the development
of a ground image processing system
(ground segment) as well as for overall
performance of the system.

The main body of the flight segment
as shown in Figure 1 consists of NASA's
standard MMS and the Landsat Instrument
Module (IM). The orientation of the
spacecraft in its orbit is such that the
long dimension of the spacecraft body
(the roll axis) lies in the plane of the
orbit; the antenna mast is parallel to
the local vertical (yaw axis):; and the
rotation axis of the solar array panels
is parallel to the normal to the orbit
plane (pitch axis).
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Figure 1. Landsat-D Flight Segment
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The IM includes the MSS with optics
and scan mechanism compatible with the
Landsat-D orbit and the TM instrument of
similar design to MSS but with bi-direc-
tional scanning. TM has seven spectral
bands, six reflective and one thermal.

The Landsat-D Ground Segment consists
of a Mission Management Facility which
schedules all data acquisition and con-
trols production on the ground; a Control
and Simulation Facility which provides
flight segment control; and an Image
Generation Facility which receives and
records image data, radiometrically and
geometrically corrects the data and
generates archival products.

The ground segment is a highly auto-
mated spacecraft control and image pro-
cessing facility that will provide fast
processing. Within the Image Generation
Facility, the Thematic Mapper Image Pro-
cessing System will develop and apply the
data needed for geometric interpretation
and correction of the imagery. The
process of geometric correction data
generation is described in the next
section.

III GENERATION OF GEOMETRIC CORRECTION
DATA

Generation of data for geometric
correction of Landsat-D imagery is per-
formed in two steps. The first of these
produces systematic correction data, the
second geodetic correction data.

' Systematic correction data interprets
the digital image array in terms of an
instrument-spacecraft-rotating earth
model. The static parameters of the
model are the spacecraft-instrument
internal alignments and earth ellipsoid
parameters. Dynamic inputs are the
measured (or predicted) ephemeris and
measured attitude data (0-125 HZ), pro-
cessed to remove outliers and to provide
a time grid of the required resolution.
The mirror velocity profile is also
determined dynamically.

The major sources of error in syste-
matic correction data are believed to be
ephemeris and low frequency attitude data
errors. These errors evidence themselves
as differences between predicted locations
and actual locations of control points or
"dislocations'" of these ground truth
points. The predicted locations are
based on measurements in systematically
corrected image data.

Geodetic correction of image data is
based on the hypothesis that the sources

of error in systematic correction data are
slowlv varying functions of time, and can
be expressed as a spacecraft "state error
vector". The components of the state
error vector are the spacecraft position
and attitude errors and their rates, and
these are estimated by the recursive dis-
tortion estimator.

Thus, the inputs to the comprtatinon
of geodetic correction data are systematic
correction data and control point "dislo-
cations". The essential outputs are
estimates of the state error vector com-
ponents as functions of time. These are
used to upgrade systematic correction data
to geodetic correction data.

IV THEMATIC MAPPER RECURSIVE DISTORTION
ESTIMATOR

he recursive distortion estimator
(RDE) ¢ used for TM geodetic correction
consists of three processes - prediction,
filtering, and smoothing - that yield an
estimate of the state error vector which
minimizes the variance of each component.

The equations for the discrete time
linear estimation problem are:

8 ( )6(tk)+w(tk), (1)

tre1) = (b x

Z(tk) = H(tk)s(tk)w(tk), (2)

k =0,1,2,....n,

where the variables are defined as follows:

d(tk) - {(nx1) state error vector at time
t, - deviation from "true" state
vector at t
k
¢(tk+1,k) - (nxn) transition matrix -

carries system from t, to t
. . k k+1
using dynamic models

W(tk) - (nx1) vector of system noise at
t, - accumulation of model noise
a% t, due to imperfect modeling
and Calculation

Z(tk) - (2x1) discrete time measurement
vector-CP dislocations in cross
track and along track directions

- (2xn) measurement matrix relating
the measurement to the state error
vector at the position (partial
derivatives of the dislocations
with respect to components of the
state vector)

V(tk) - (2x1) measurement noise vector
associated with Z(ty)

1982 Machine Processing of Remotely Sensed Data Symposium

383



The initial state error vector_ é(t_ )
is a Gaussian random variable with 6(toP
mean and covariance P(to).

W(tk) and V(t,) are mutually independent
zero mean whi%e Gaussian sequences, with
covariances given by

T _
E{W(t, )W (tj)} = Q(tk)Akj ‘o (3)
T -
E{V(t, )V (tJ.)} = R(tk)AkJ. , (4)
where:
Q(t) - (nxn) system model noise covariance
matrix,
R(t) - (2x2) measurement noise covariance
matrix,

A - Kronecker delta.

A. PREDICTION

To propagate_the dynamic variable
§(t,) to a time ti 1 (the minus indicates
valies before the fllter update) we need
models describing the evolution of 6 (t).

These models are embodied in the
transition matrix ¢(tk+ k) which propa-
gates the state vector %fom the time t

to tk 1° The equation describing the k
evolutlon is
s(t7 ) = o(t )s (£)) +w (th) (5)
k+1? T b Sty X

(where the plus sign indicates values
after filter update).

The covariance matrix P(t) obeys a
similar propagation equation given by

+, T
P( = 80t W PED ST (k)1 )+ (£6)

WSy
The calculation of the transition matrix
for ephemeris is based on the vector
equation

d2

dt

aR%

+py r=a (7)
r3

N

where ; is the vector position and g is a
vector of acceleration arising from the
presence of the disturbing forces, and is
Qodeled as a white noise process. Let
ro(t) be the spacecraft position in an
undisturbed (reference) orbit and r(t) be
the true position vector. The dynamicg
equations for the state vector (¥-F% ,?—?O)
can be obtained by linearization of
Equation (7). The form of these equations
and, further, the form of the transition
matrix depends upon the choice of refer-
ence orbit.

. The transition matrix for the
attitude is based on the following simpli-
fied dynamic equations for the gyro angles
roll (x,), pitch (x,), and yaw (x3) and
their rates (x4, X5, and x6):3

X1 = wX3-X4+El; X4 = 54:
X2 = —X5+£2: X5 = 55: (8)
X3 = —le—X6+E3: X6 = 56.

where @ is the spacecraft orbital rate and
£, &, @and_ £, are white Gaussian noise
with Variance o% and £ ,, €., and £, are

white Gaussian noise with ¥ariance c5.

The transition matrix for Thematic
Mapper dynamic alignment is based on the
stochastic process equations

E+gp = U(t),
and (9)
no=g.

Here n is the alignment angle and £.
the corresponding rate. U(t) is a white
noise process, and T is a time constant.
These equations reflect the fact that
during the interval of interest the
alignment angles may be approximated by
integrals of colored noise,

B. FILTERING

This step involves updating §(t.)
and P(t.) based on the measured control
point dIslocation at time t,. Two
quantities must be computed before the
update can be performed. One, is the
residual of the measurements %(ti) given
by

N - -
Z(tk) = Z(tk)—H(tk)G(tk). (10)

Z(t,) is the measured dislocation and
H(t, ) is a measurement matrix whose
elements are the partial derivatives of
the along track and cross track disloca-
tion with respect to the §'s, so that
H(tk)é(ti) is a predicted dislocation.

The other equation defines the Kalman gain
matrix K(tk) as follows:

K (tk) =P(t];) HT(tk){H(tk)P(t]:)HT(tk)+R} ‘1(11)
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These quantities appear in the filter
~update equations which are:

- L% -
= <S(tk )+I<(tk)Z(tk ) (12)
)y = P(tk‘)-K(tk)H(tk)P(tk') (13)

The difference between the measured
and predicted dislocations is used to up-
date §(t;) but it is weighted by the
Kalman gdin matrix, which is a function
of the covariance matrix and the measure-
ment noise matrix. If the model errors
are dominant then the residual will have
a large impact on the update, while a
large measurement noise will reduce its
effect.

C. SMOOTHING

This step starts with the filtered
data and works backward to recursively
compute a smoothed estimate of the state
error vector. Assuming there are a total
of N observations (control point dislo-
cation measurements) for the imagery
interval, the last state vector estimate
is §(t,,) and the last covariance matrix
in the filter is P(t, ). Starting with
these values the smoother computes a
state error vector estimate at the next
to last point.

It then uses the smoothed estimate
there and filter prediction at the
previous point to produce a new smoothed
estimate,and so on. The basic equations

are
e R E R RIS | M T (14)
85(t, ) =8 (£, ) 4c, 165 (k)-8 (kg DY, (15)
P (t,) =P (t, ")+ (P% (£, ) -P(tg, ) }Ck. (16)

In Equations 14-16 the index k takes on

values from N-1 to 0. The smoothed state
error vector estimates are Gs(tk) and the
covariance matrix is P (tk).

Smoothing using filtered data is the
optimal combination of two estimates, one
obtained from a forward filter sweep of
the measurements and the other from a
backward sweep of the filtered estimates.
The smoothing solution presented here is
in a recursive form and is used to pro-
cess the filtered estimates in reverse
order, from last to first.

V_SIMULATION

In order to test the performance of
the recursive distortion estimator, simu-
lation studies® were carried out using
the ephemeris, atiitude, and alignment
models described in section IV. The
initial values for the model variables
were selected randomly based or a priori
estimates of the variances of the state
error vector elements. These initial
elements were then propagated over the
interval of interest to determine the
state error vector on a grid of evalua-
tion points. The ground dislocations
associated with these state error vectors
were stored as "real world" data against
which the RDE performance could be
measured. To produce simulated control
point measurements, a given number of
control points were randomly selected.
Dislocations were computed for these
selected control points and corrupted by
the addition of a random measurement
error (image noise) chosen from Gaussian
d%stributions with cross track variance

oy and along track variance oy.

The simulation studies were perfor-
med for filter state error vectors of
dimension 18 and 12. The 18 variables
are ephemeris, alignment, and attitude
position and rate errors, while the 12
variables are only ephemeris and align-
ment errors, that is; the attitude errors
are included in the alignment errors.

To produce "real world” data the
simulator always used 18 variables. The
RDE used both 18 and 12 variables in its
models. The effects of attitude and
alignment errors on the ground are dif-
ferent, but for time intervals between
control points used in this simulation
the results involving 12 and 18 variable
state error vectors were comparable.

The control point measurements were
the inputs which the RDE used to estimate
the state error vector at the control
points. The estimated state error vectors
at the evaluation points were found by
interpolation. The estimated state error
vectors were multiplied by the measurement
matrix to yield estimated control point
dislocations. These were compared with
the "real world" data described before.
The residuals or differences between the
estimated and "real world" dislocations
were computed at all evaluation points.
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The performance of the RDE is typically
characterized by the 90 percent residual,
e’Y, defined as the residual value greater
than 90 percent of the residuals in a
interval of imagery. This performance
measure of the RDE portion of the geometric
correction is compared against the system
requirement that the RDE residuals be less
than 4.9 meters, 90 percent of the time,
for a measurement error of 6.7 meters.

590 is a function of the control
point density and the measurement error.
Figure 2 illustrates some typical results.
Each curve is labeled according to the
density of control points (control points
per scene) and the number of variables
used in the RDE (18 or 12). Approximately
100 realizations were run to obtain a
statistically significant value for each
point. As expected, the ¢90 residual
value improves as the control point
density increases and the measurement
error decreases. The 18 and 12 variable
cases give comparable results.

The density of control points needed
to meet the system requirements stated
above is plotted as a function of imagery
interval length in Figure 3. The density
required for intervals greater than 10
scenes is stable at about 3 control points
per scene.

10 b~

NINeTy PERCENT ResibuaL (meTERS)

[T TR N | ] |
S 10 15
MeasuremenT ERroR (METERS)

Figure 2. Ninety Percent Residual as a
Function of Measurement Error. Solid
lines are for the 18 variable state error
vectors, and dashed lines are for the 12
variable state error vectors. Numbers
next to curves are control point
densities. Results are shown for a five
scene ‘interval.
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Figure 3. Control Point Density Needed to
Meet System Requirements as a Function of
Interval Length.

VI _SUMMARY

The RDE was successfully adapted for
use in the Thematic Mapper geodetic
correction data generation. This method
offers advantages in the case of
interval processing because it minimizes
the number of control points needed per
scene, it provides continuity of correc-
tion across scene boundaries, and provides
for correction of embedded scenes with few
or no control points.
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