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SATELLITE REMOTE SENSING: AN INTEGRAL TOOL

IN ACQUIRING GLOBAL CROP PRODUCTION INFORMATION

F.G. HALL

National Aeronautics and Space
Administration/Johnson Space Center
Houston, Texas

ABSTRACT

The state-of-the-art in satellite
remote sensing of crop type, condition,
and stage in foreign regions is reviewed.
A very general approach for automatically
distinguishing and identifying various
classes of cultural vegetation isdescribed
This approach is based on Landsat MSS data
and in particular the Greenness-Temporal
Profile models of Badhwar and incorporates
a sound physical understanding with which
to apply this technology to general cul-
tural and noncultural vegetation types.

The Temporal-Profile approach to

identifying and estimating the area of
corn and soybeans near harvest has been
tested over the U.S. Corn Belt and Missis-
sippi Delta regions and demonstrated to
produce unbiased estimates of corn and
soybean area with very low variance.
These techniques are completely automated.
The next logical step is the extension of
this capability to foreign regions and to
mid and early season.

Research in advanced information ex-
traction techniques to identify crops is
also reviewed. Several key issues are dis-
cussed; improving preprocessing and regis-
tration techniques; improving the under-
standing of the statistical distributions
of the profile parameters; understanding
how registration errors and mixed pixels
affect these distributions; understanding
how to model these distributions in the
digital image scene and how to incorporate
the spatial component of the digital image
data.

Technology for estimating stage of
development for corn, soybeans and small
grains is reviewed and found capable of
predicting stage to within about 1 week of
ground observed occurrences of these stages
In addition, early results from the use of
spectral data to monitor key plant process-
es such as evapotranspiration and photo-
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synthesis are reviewed.

Work to explore the additional spec-
tral regions made available by Thematic
mapper, and future microwave sensors is
in its early stages. However, current
findings indicate that these spectral
regions are responding to physical pheno-
mena different than is sensed at VIS/NIR
wavelengths and should add significantly
to our capability to identify vegetation
and monitor its condition.

Finally, future research directions
in vegetation mapping are discussed.

I. INTRODUCTION

Since its inception in the 1960's, a
major thrust of the National Aeronautics
and Space Administration (NASA) program
of research in remote sensing has been to
advance the state-of-the-art in machine
processing of satellite acquired multi-
spectral data. The specific focus for
this research has been to investigate the
use of multispectral data to identify
type, to monitor condition, and to esti-
mate the ontogenetic stage of cultural
vegetation.

This effort has been confined largely
to crops and has been embodied in a number
of major programs. Among these are: The
Corn Blight Watch conducted in 1970 (ref.
1), which established the feasibility of
digital, maximum 1ikelihood classification
of aircraft acquired multispectral scanner
data to identify crops over a large
(multistate) area in a timely manner; the
Crop Identification Technology Assessment
for Remote Sensing (CITARS) in 1972 (ref.
2), which established the feasibility of
automating the digital classification
approach to provide rapid, repeatible
processing of Landsat Multispectral Scan-
ner System (MSS) data over large areas;
and the Large Area Crop Inventory Experi-

1982 Machine Processing of Remotely Sensed-Data Symposium




ment (LACIE) in 1974-1978 (ref. 3), which
demonstrated that Landsat MSS data in
foreign regions, in the absence of ground
observations, could be processed utilizing
manually assisted machine processing tech-
niques, along with multistage sampling,
weather data and crop condition models, to
identify crops, to estimate their areal ex-
tent, stage of maturity, condition, yield
and production on a global basis. These
efforts stimulated a follow-on program of
research (AgRISTARS)(ref. 4) designed to
address the technical fissues defined by
LACIE, to investigate other portions of
the electromagnetic spectrum, and in addi-
tion to expand the LACIE small grains tech-
nology to corn, soybeans, and other key
crops in several important producing re-
gions of the world.

This current paper will review the
state-of-the-art of the technology used to
make remote sensing crop production esti-
mates in foreign regions. This assessment
will be largely confined to the technology
resulting from those efforts described
above, and in particular, will focus on
those achievements of the Supporting Re-
search Project, one of several projects
within the AgRISTARS program.

IT. LANDSAT DATA ACQUISITION

The major inputs to a remote sensing
crop survey system are radiometric image
data in each of several regions of the
electromagnetic spectrum along with mete-
orological and historic agricultural
statistics. These data permit the identi-
fication of the type, the condition, and
the stage of development of vegetative
canopies. Ground observations of crop
type and condition cannot be utilized, un-
less a reliable and objective source of
these data can be established. Thus, for
foreign crop production survey technology
much of the remote sensing survey research
has concentrated on crop identification
techniques which do not rely on ground
observations.

As with ccnventional, ground-based
crop surveys, satellite-based crop surveys
rely on statistical sampling technigues.
Sampling of the total Landsat coverage
from the survey region maximizes the sur-
vey accuracy for a fixed quantity of data
processing resources. Results from the
LACIE showed that a 2% areal sample of a
survey region would achieve a precision of
roughly 2% (ref. 5). Thus, processing and
Landsat data from the remaining 98% of the
survey region would add Tittle to the sam-
pling precision, but would almost certain-
1y degrade area estimation accuracy. For
a fixed resource base, degraded accuracy

would result since processing resources
per sample unit would decrease and there-
fore very likely increase classification
error.

A discussion of the state-of-the-art
of sampiing techniques for remote sensing
agricultural surveys is beyond the scope
of this current review. Many of the tech-
nigques such as stratification, allocation,
inference, etc., developed for ground
surveys, apply rather straightforwardly to
the satellite survey. Suffice it to say,
that this technology is rather well de-
veloped and was verified in LACIE. Compre
hensive reviews of sampling technology as
applied to remote sensing may be found in
various articles within the LACIE symposi-
um literature (ref. 6).

To date the research to develop re-
mote sensing crop survey systems has pri-
marily focused on the MSS orbiting aboard
the Landsat spacecraft (ref. 7). To be
launched in 1983 is the Thematic Mapper
(TM) with a projected improvement in per-
formance. The thrust of the crop survey
research has concentrated on the visible
and near-infrared (VIS/NIR) portion of
the electromagnetic spectrum. This re-
search has shown that vegetative appear-
ance in the VIS/NIR at a single time is
not sufficient to reliably distinguish and
identify different vegetation types over
large areas. At least 3 to 4 passes dur-
ing the growing season are needed to dis-
tinguish and identify types based upon
their developmental difference through
time (ref. 8). )

Only very modest efforts have ex-
plored the Middle Infrared (Mid-1IR),
Thermal Infrared (Thermal IR), and micro-
wave portions of the electromagnetic spec-
trum. There are strong indications that
these regions will be most useful for
identifying and evaluating the condition
of vegetation. While the VIS/NIR portions
respond primarily to the chlorophyll con-
tent and cellular structure of the leaves
of a vegetative canopy (ref. 9), the Mid-
IR responds primarily to the total water
content of the canopy (ref. 10), the
Thermal IR to the kinetic temperature of
its leaves, and the microwave, particular-
ly the active microwave, to the overall
canopy structure (ref. 11).

Thus, adding these new bands, will
permit additional physical phenomena to
be observed and significant improvements
in identifying and monitoring the condi-
tion of crops can be anticipated as the
Mid, Thermal IR and Microwave portions of
the spectrum are explored in the next few
years.
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ITT. REGISTRATION AND PREPROCESSING

The need faor multidate acquisitions
to reliably identify crops implied the
need for accurate registration and preproc-
essing of Landsat data. Registration was
necessary to place subsequent lLandsat ac-
quisitions into spatial congruence. Pre-
processing was needed to remove within-
pass and pass-to-pass radiometric and
geometric variability.

Geometric preprocessing operations
are intended to correct the digital images
for geometric distortions introduced by
scanner irregularities, topography, earth
curvature, etc. The state-of-the-art in
geometric preprocessing to correct for
spacecraft attitude and ephemeris differ-
ences is well developed (ref. 12). Suc-
cess has also been reported (ref., 13) for
aircraft scanner data, which in general is
more difficult because of the Tess stable
platform. However, more work is needed to
geometrically correct for differences be-
tween digital image scenes from disparate
sensor types, such as differences between
optical scanner and synthetic aperture
radar images. In addition, correction for
terrain effects must be more fully
developed.

Radiometric preprocessing operations
are intended to "normalize" the radio-
metric values for each scene for scene-to-
scene differences such as sun angle differ-
ences from one seasaon to the next, for
differences in instrument calibration from
one acquisition to the next, and for dif-
ferences in atmospheric haze from one day
to the next.

Radiometric carrections for detector-
to-detector calibration differences in
Landsat MSS scanners are extremely impor-
tant since incorrect procedures can intro-
duce considerable scene variance into the
digital image maps, and cause acquisition-
to-acquisition differences in radiometric
values. Detector-to-detector adjustments
were made for the Landsat MSS (ref. 14)
and in general were reasonably successful.
Acquisition-to-acquisition adjustments re-
quire that a stable calibration socurce be
periodically viewed. An in-flight cali-
bration of the Landsat MSS was accomplish-
ed by viewing an on-board calibration lamp
each scan. The stability of the on-board
calibration was checked on each Landsat
pass over the Earth's polar regions as
solar flux was reflected into the MSS de-
tectors. A key problem with linear array
systems envisioned in SPOT and future US
satellites will be the inability to
accurately account for detector-to-detector
calibration differences.

A key area where little success has
been realized is the correction of Landsat
data for within scene and between scene
atmospheric differences. A number of at-
mospheric models exist for estimating the
effects of the atmosphere (refs. 15 and 16)
on radiance at spacecraft altitudes, and
these models are in general realistic.

The key problem, however, is the estimation
of the input parameters to the models.
These models generally require at least
atmospheric optical depth or visibility
estimates. A number of techniques have
been suggested to estimate these parameters,
such as the yellowness component of the
Kauth-Thomas transformation (ref. 17), and
dark-level subtraction techniques (ref. 18)
to estimate path radiance over relatively
dark targets such as water bodies. How-
ever, these techniques are approximate and
themselves add noise to the scene. Evalu-
ations of these techniques are inconclusive
as to whether they add or detract from
classification accuracy. Research is
needed which will improve the understand-
ing of the magnitude of the within and be-
tween scene variability in parameters such
as atmospheric optical depth, and their
effects on classification accuracy.

Upon completion of preprocessing,
multidate acquisitions from a segment are
registered to a preselected reference ac-
quisition. This completely automatic
process begins by processing the image to
locate "edges" or boundaries such as high-
ways or agricultural field edges in both
the reference image and the image to be
registered (ref. 19). Many state-of-the-
art approaches accomplish this by defining
edge pixels as those contained in a neigh-
borhood in which there is a strong gradient
in radiometric value. Thus, the gradient
image is used to specify an edge image for
each acquisition. The edge images are
spatially correlated to the reference
image and the position of maximum correla-
tion chosen to register the images. Based
on these concepts registration techniques
developed and implemented at the Earth Re-
sources Research Division (ERRD) are capa-
ble of 0.5 pixel rms registration accuracy
(ref. 20). High accuracies are extremely
important because, in order to follow the
temporal development of a crop canopy, it
is necessary to be able to measure the
radiance from a single point on the ground
over the course of an entire growing sea-
son. Misregistration, particularly near
field boundaries, can cause measurements
to shift from one vegetative class to
another during the season. A simple model
has shown (ref. 21) that for the same pixel
from two different acquisitions to have
50 percent overlap or more, an rms regis-
tration accuracy of 0.2 pixels rms is re-
quired. Research is underway to improve
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current accuracies beyond the currently
‘obtainable 0.5 pixel. The central issues
being pursued are (1) improved identifica-
tion and location of image edges and lines
to subpixel accuracies using the tech-
niques defined by Haralick and others
(ref. 22); (2) improved techniques for
correlating the image features from one
image to the next; and (3) application of
existing image processing techniques (refs.
23 and 24) to improve image resolution and
geometric fidelity prior to registration.

IV. DATA TRANSFORMATION

Since for the MSS, one acquisition
results in 4 channels of information, 4
such acquisitions result in each pixel
being represented by a 16-dimensional vec-
tor or radiance measurements. With
Thematic Mapper the dimensionality will
increase. Analysis in a 16-dimensional
vector space, however, has proved to be
impractical both because of computational
difficulties as well as the Targe number
of parameters which must be estimated when
using techniques such as parametric maxi-
mum ltikelihood classification. In addi-
tion, principle component along with fea-
ture selection analyses of lLandsat data
have shown that operating in such a large
vector space is not necessary since most
of the vector information faor a given
Landsat pass is largely contained in a sub-
space of 2 dimensions. The probiem, how-
ever, was to find the directions of the
axes of the information bearing subspaces,

A breakthrough in this problem came
in 1975 by Kauth and Thomas (ref. 25) when
they discovered that a fixed 2-dimensional
subspace of Landsat channel space con-
tained most of the spectral information
for a very large range of agricultural,
seasonal, and meteorological conditions.
Further, they showed that changes in value
along one of the axes of this subspace was
related to changes in the level of scene
albedo or brightness and that changes
along a perpendicular axis were related to
changes in the amount of leafy matter in
vegetative canopies. They proposed axes
that were related to the 4 Landsat bands
by the linear transformation.

4
. = R
‘3 1Z=:1 tigti

(1)

0.33231 -0.28317 -0.89952 -0.0159
R = 0.60316 -0.66006 0.42830 0.13068
" 10.67581 0.57735 0.07592 -0.45187
0.26278 0.38833 -0.04080 0.8823
T 2 3 4

where (X' ,X",X",X") represent the original
Landsat channel values.

This discovery by Kauth and Thomas
reduced the dimensionality problem by a
factor of two, provided landsat parameters
that were physically relatable to known
properties of soils and vegetation, and
parameters that were relatively insensitive
to certain background effects such as row
direction. In these regards, various
studies have shown that greenness is highly
correlated to percent ground cover by the
canopy (ref. 26) and Leaf Area Index (LAI),
defined to be the ratio of total canopy
leaf surface area to horizontal projected
area extended by the canopy. Studies have
also shown that radiance measurements from
different soils in a scene tend to be dis-
tributed along the brightness axes, which
being perpendicular to the greenness axis,
renders the greenness axis relatively in-
sensitive to soil background effects. For
the same reason, greenness has been shown
to be relatively insensitive to other
brightness dominated effects such as row
direction with respect to sun azimuth
(ref. 27). An important problem now under
investigation is to ascertain where the
information regarding vegetation and soils
is in TM channel space and whether or not
there is new information present in the
Mid-IR and Thermal IR regions sensed by
Landsat TM.

V. DATA MODELING

Although the Kauth-Thomas discovery
had reduced the Landsat dimensionality
probiem by a factor of 2, there still re-
mained a problem at 6 to 8 dimensionality.
Further, it was known that the trajectory
of greenness and brightness through tempo-
ral space was different for different
crops. The problem remained as to how to
relate these temporal trajectories to
agrophysical properties of the crops such
as differences in development rates, grow-
ing season lengths, planting dates, etc.
The first solutien to this problem was ob-
tained by Badhwar (ref. 28) in 1980 when
he showed on the basis of empirical con-
siderations that for corn, soybeans, and
small grains, the greenness profile in
time could be approximated by

2
6(t) =6 (t/t )% (t-t) (2)

where G{(t) is the greenness profile, G is
the bare soil greenness, t, is the dat® of
emergence, o is a crop specific parameter
related to the rate of change of greenness
in early season, and k is another crop
specific parameter related to the rate of
onset of senescence, This formulation was
extremely important because it permitted
the dimensionality of the data to be fur-
ther reduced and related the Landsat data
to agrophysical parameters such as
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emergence date, rate of green development,
rate of senescence and total length of
growing season. To estimate the parameters
of eq.(2) from the Landsat data, preproc-
essed, multidate Landsat data is trans-
formed by (1) into Kauth-Thomas space, then
greenness is modeled by the Badhwar model
by fitting to each pixel the function of
eq.(2) using the technique described in
ref. 29. Thus for each pixel, the 16-
dimensional vector (assuming 4 acquisi-
tions) is replaced by the 3-dimensional
parameter set a,k,t; . Since the original
work by Badhwar, a more general functional
form for G(t) has been investigated by

him. He related the average rate of
growth, k, of_greenness and a growth re-
tardation factor, r, to the rate of change
of greenness through the differential
equation

dG/dt = kG(t) - rE(G) (3)

where E(G) is the relationship between
growth retardation and greenness {(i.e.,
plant population density). Choosing E(G)
to be G2, i.e., the retardation rate per
individual plant proportional to the popu-
lation size, equation {(3) has the solution,

G

_ ma x
6 ‘ Gnax - {t k(t)dt )
1+ ( -1)e 0
G
o
where Gmax is the maximum canopy greenness.

The form of equation (4) has several
advantages over the earlier form (2) pro-
posed by Badhwar. First, the parameters
of (4) can be more directly related to the
canopy morphology. The parameter k is
equal to the birth rate minus the death
rate of leaves in a canopy, which can
be established for various species
under various conditions by either
empirical observations or by pheno-
logical models such as the one developed
by Ritchie (ref. 30). Thus given 4 Land-
sat observations of an unknown crop, equa-
tion (4) may be fit to that sequence of
observations, the parameter k estimated
from the fit, and the crop identified by
matching the Landsat observed k to the k
predicted by a phenological model.

The second advantage of the model
form (4) is that it overcomes a weakness
of Badhwar's previous form. To wit
(Bauer, et al. (ref. 31), and Crist (ref.
32)) showed that there is a general flat-
tening of the: greenness profile around its
peak. Badhwar's earlier form, eq.(2) was
highly peaked at t =sqrt(a/2k) and thus
did not adequately represent the true
greenness profile at this time. However,
with the form of eq.(4), when k is posi-

tive (leaf birth rate exceeds death rate)
greenness is increasing. When k is zero,
greenness remains stationary and when k is
negative, greenness decreases. Thus, eq.
(4) is consistent with the phenology of a
crop and corrects for the weaknesses noted
with Badhwar's earlier model. Equation
(4) can be simplified further in cases
where the form of the greenness profile
can be assumed invariant with respect to
planting date. This leads to an invariant
model of greenness

2ge al/2

-(t—to)ae'B(t'to)

G(t) =Gy + (6, 6, )(

which has a peak at t _-t, = V{a/28) and
has a maximum greennegs vatue Gpax-Go=
Ala/28e)2/2. Moreover, this profile has
two inflection points t] and t2, such that

1/2
(6)

g? = (tz-t])2= 1/28+a/B8{1 - (1-1a)
= 1/8

Badhwar has shown (ref. 33) that t]
corresponds closely to the onset of the
reproductive phase of a crop and that t,
corresponds to the onset of senescence.
This implies that ty, t, and thus o can be
predicted using crop calendar models and
provide an important feature for Tabeling
crop types.

The key probliems to be addressed in
the profile modeling research are (1) the
investigation of the temporal behavior of
the brightness component of the Kauth-
Thomas transformation, (2) application of
optimum statistical approaches to profile
fitting, (3) investigation of the effects
of plant condition variations (e.g.,
drought, disease) on the form of temporal
profile, (4) investigation of the profile
form at TM wavelengths, (5) verification
of the underlying model form of eq.(4),
particularly the relationship of k to the
birth-dath rates of leaves and (6) the use
of o, ty, t and G in early season crop
identification prior to full season data
set availability.

An important additional problem to be
addressed with respect to profile param-
eters is the problem of feature selection.
Which of the features permitted by the
temporal greenness profiles provides the
best separability and identifiability of
crop types? How much information is re-
tained in transforming from the original
Landsat space to the profile parameter
space? In this context, separability is
defined as, for example, the Bhattacharyya
distance (or some other measure such as
probability of misclassification) between

1982 Machine Processing of Remotely Sensed Data Symposium

14



the segment probability distributions
functions F(a,k,.../c) pairwise between
the crops ¢ of interest in the segment.
Identifiability does not have a precise
mathematical definition but refers to the
ability to specify a unique map between
parameter values of the marginal distribu-
tion functions F(a,k,.../c) and the crop
types in the object scene. The separa-
bility problem has been extensively ad-
dressed in a more general context by Swain,
Decell, Guseman et al. (refs. 34, 35, 36),
but their techniques have not been applied
to the specific problem of selection of
optimum profile parameters. A1l of the
work to date regarding feature selection
with profile parameters has been heuristic/
empirical in nature. Linear combinations
of parameter features have not been in-
vestigated. For corn from soybeans, and
for small grains as a class from pasture,
at harvest separability in the profile
parameter feature space just discussed is
reasonably high for pure pixels, in the
range of 90 to 95 percent probability of
correct classification.

VI. PROPORTION ESTIMATION

Given a profile feature representa-
tion of each pixel in the digital image
scene, the problem remains as to how to
use this representation to identify the
various cover types in the object scene
and to estimate their areal proportions.

To date, most approaches to process-
ing Landsat MSS data for crop identifica-
tion have relied primarily on the spectral
information contained in the digital image
scene, and very little on the spatial in-
formation (e.g., texture, contextual
structure), with the exception of spatial
clustering approaches such as ECHO (ref.
37), BLOB {(ref. 38) and AMOEBA (ref. 39),
and the contextual classifier of Swain
(ref. 40).

Historically, most of the spectral
approaches have relied on ground observa-
tions to train a pixel classifier of some
type such as the maximum 1ikelihood clas-
sifier. Pixels classified into the vari-
ous cover types were counted and the ratio
of the count of each cover type to the
whole utilized as an estimator of the
areal proportions P! for each cover type,
i.e.,

Pi = nl/N (7)
However, this is a biased estimator in

the presence of misclassification error,
and the bias is given by

e(pl - pty = plw/o)
- [P(0/w) +P(w/o] P* (8)

where Pt is the true proportion of target
crop w. Because the errors of omission
P(o/w) and commission {(P{w/o) do not
balance, and in general are not correlated
to the ground cover proportions, the bias
of eq.(8) can be Targe. As the errors of
omission and commission approach zero, the
bias approaches zero. Thus, for well
separated cover classes, the bias in the
proportion estimate will be small. For
such features, the per-pixel classifier
approach can work well as demonstrated by
Badhwar in an experiment utilizing seg-
ments in the U.S. Corn Belt, where bias in
estimating corn and soybeans proportions
were less than one percent (ref. 41). To
what extent features can be found such that
a per-pixel classifier leads to acceptably
small biases depends of course on the
degree of accuracy required.

Research is currently underway to ob-
tain unbiased estimates of crop proportion
even in the face of significant "overlap"
in the crop spectral distribution func-
tions. This approach relies on a technique
called "Mixture Decomposition" because it
involves a decomposition of the segment
distribution function P(X) into its compo-
nent marginals. In this approach the seg-
ment distribution function is modeled as
the linear combination of the marginal dis-
tribution functions of the individual crop
types in the object scene.

P(X)=za'P(X/C") (9)
where o' is the areal proportion of the 1th
crop in the scene and P(X/C1) is the margi-
nal distribution function for the i crop.
Teicher (ref. 42) showed that P(X) can be
resolved uniquely in terms of the a's and
the marginals, given that the marginals
form a linearly independent set of func-
tions.

Using a maximum likelihood estimator
this result provides a means for obtaining
unbiased estimates of the proportions, a
using the following approach: P(X) can be
estimated directly from the set of spec-
tral observables <X1>. al, and P{(X/CT)
can be estimated using iterative numerical
techniques to ascertain a maximum likeli-
hood fit to eq.(9). By assuming a para-
metric form for P(X/C'), such as normally
distributed marginals,

p(x/cHyan(ul, 1) (10)

maximum 1ikelihood estimates for the param-
eter set <u', Z'> may be obtained.

To what degree this approach will be
successful in obtaining accurate propor-
tion estimates is under study. Clearly,
the accuracy will be influenced by the
degree to which reality is approximated by
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the model assumptions. Are the true margi-
nals really linearly independent? To what
extent are these distributions normal?

Perhaps a more serious concern with
the mixture decomposition approach is the
fact that the mixture decomposition model,
eq.(9), assumes that each pixel in the
digital image scene is monitoring radiance
from a single cover type. Pitts and
Badhwar (ref. 43) have shown that in the
U.S. roughly 60% of the pixels in a Land-
sat MSS scene will be mixed. While it is
clear that the mixture decomposition model
is not the correct one for other than pure
pixels, it is not known to what degree
this model represents the true distribu-
tion including mixed pixels, or for that
matter, how to write down the proper model
to include mixed pixels. In general,
there are two possible approaches to deal-
ing with the mixed pixels.

One approach is to separate the scene
into mixed and pure pixels and estimate
the crop proportions using different
methods for the mixture and the pure
pixels. This has the advantage that
existing methods, such as the mixture de-
composition approach can be applied to
the pures. A separate technique would be
required to estimate proportions for the
mixed pixels. However, this dual approach
requires a method for detecting which
pixels are mixed and which are pure,.
Approaches similar to the ones being in-
vestigated for edge detection in regis-
tration may be applicable.

Another approach to handling the
mixed pixel problem is to develop a scene
mixture model which models the distribu-
tions for both pures and mixed. Whether
such a model could be solved uniquely for
the crop proportions will not be known
until the precise form of the model is
known. A strong possibility is that such
a model form will not have unique solu-
tions for crop proportions.

VII. LABELING

With estimates of the areal propor-
tions, al, the remaining problem is to
associate (label) the marginal distribu-
tions with ground cover types. Research
is currently focused on comparing,the
maximum l1ikelihood estimates of u and I
to predictions of these parameters from
agrometeorological models. For example,
the G of Badhwar's model, eq.(6) is an
obvious candidate for the mixture decompo-
sition approach. Using this parameter to
characterize the seasonal behavior of
each pixel would result in a specific
form of eq.(9) given by

i

P(o) = 2 o p(emaxi/ci) (1)
1

The mixture decomposition approach
would yield estimates of the G 1 for each
marginal distribution (as well as the areal
proportion). Because the G T are known
to represent the peak greenwgés for the ith
crop, expected values for Gm x] for each
cover type suspected to reSIQe in the ob-
ject scene can be predicted using a priori
knowledge of crop characteristics. For
example, if corn and soybeans were the
only crops in the scene, and each were
represented by a single normal distribution
of G , the prior knowledge of the charac-

max
teris%ics of these crops would tell the
analyst that

E(G ) soy 2 E(G ) corn (12)

max max

and thus the o' corresponding to the margi-
nal P(X/Cl) with the largest value for
E(Gmax) would represent the estimate of

the areal proportion for soybeans in

the segment.

For parameters where such stable re-
lationships may not exist, and indeed may
be functions of region and weather, models
which predict these parameters as functions
of these exogeneous variables (agrometeor-
ological models) may be necessary to ob-
tain estimates of these parameters for the
purpose of labeling. The predicted values
can be mathematically matched to the maxi-
mum likelihood estimates obtained from the
Landsat data to label the several marginal
distribution functions derived by mixture
decomposition.

The labeling problem is not a solved
problem and research is currently ongoing
to develop automatic Tabeling approaches.
Research which may bear on this problem is
the current work in the area of Expert
Systems (ref. 44). Even though this re-
search is in its early stages one thing
is clear. The labeling process will most
likely require an ability to predict crop
development stage and crop condition from
meteorological and anciliary data such as
historical agricultural statistics.

VIII. DEVELOPMENT STAGE MODELS

Crop development stage models (more
properly, ontogenetic models) serve two
very important functions in the production
forecast system. As just discussed, these
models will almost certainly be key to the
crop identification problem. Perhaps even
more important, however, is their role in
crop yield forecasts. Crop yield is de-
pendent on plant condition which is in
turn dependent on weather and more specif-
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ically at what point in the life cycle

the key yield influencing weather events
occur. For example, in corn high tempera-
tures during the pollination period can
have a devastating effect on yield, where-
as the same high temperatures on either
side of this critical period will have
little or no effect.

To date crop development stage models
have been developed for several major
crops, including wheat (ref. 45), barley
{ref. 46), corn (ref. 47) and soybeans
(ref. 48). The development stages of
these crops depend primarily on date of
planting, temperature and precipitation.
These models predict for a local site,
the calendar date at which half the crop
area in the scene has reached a particu-
Tar point on a numerically described
scale of development: for example, a
scale such as the one by Robertson in
which the stage designations range numer-
ically from 2.0 at crop emergence to 6.0
when the crop is mature. These models
must be initiated using either observed
or predicted date of planting (by field
or scene median, whichever is appropriate).
In foreign applications, where ground ob-
served planting date is not readily avail-
able, planting date models are needed to
start the crop stage models.

Input requirements for some of the
simpler stage of development models such
as that of Robertson are daily maximum
and minimum temperatures collected from
ground meteorological stations, available
worldwide from the World Meteorological
Organization (WMO) network). Scme of the
more sophisticated models can in addition
utilize Landsat spectral data, solar radi-
ation data and daily precipitation.

The models generally advance and then
accumulate the development stage on a
daily basis as does Robertson according
to the relation

. 2
st = Al (p-a%) +a%(p- %]
2
N [81 (Tmax —BO) + BZ(Tmax_ BO)
+ ¢! (Tmin -B%) + 2 (Tmin _ Bo)‘]

where P is the daily photoperiod calcu-
Tated for the particular latitude and
longitude of the area, TMax and TM'M are
the measured daily maximum and minimum
temperature for the area and all other
terms are coefficients determined by an
iterative regression technique, from a
data base of temperatures and development
stages collected over several years from
experimental plots located at agricultural

experiment stations.

The median stage of development after
N days have elapsed since planting would
then be given by

N ) 1
SToEiHy S (14)
Since the coefficients of eq.(13) them-
selves depend on the development stage,
the period of accumulation in eq.(14) is
divided into periods during which the co-
efficients are considered uniform. For
example in Robertson's model there are
four such periods; emergence (2.0 to
jointing (3.0), 3.0 to heading (4.0), 4.0
to soft dough (5.0), and 5.0 to ripe (6.0)

The Robertson model was extensively
evaluated during LACIE and was found to
predict the median date to within about
7 days of the ground observed date (ref.
49). A key weakness in this model was its
lack of response to moisture deficit con-
ditions. Doraiswamy and Thompson (ref.
50) investigated this problem in AgRISTARS
and developed a modification to the
Robertson model which attempts to account
for the effects on rate of crop develop-
ment of moisture deficits. A test of
their model over several U.S. test sites
indicates some improvement over the
Robertson model. However, a limiting
factor in evaluating the improvements in
inaccuracies in the ground observations
of crop stage. Fields are visited only
each 9 days at the maximum, and the ob-
servations for a field are not based on an
objective survey. Before work can pro-
gress further in this area, more precise
ground observations of stage are required.
This is a key effort in AgRISTARS field
measurements program in 1982.

Al1 of the agrometeorological models
require a knowledge of either the planting
or emergence date in order to start the
model clock running. Recently Badhwar and
Henderson (ref. 51) have developed an
emergence date prediction model based on
Badhwar's spectral profile model. This
technique amounts to nothing more than
estimating t, from eq.(2) and letting this
represent the emergence date. O0f course,
ty is the date at which emergence is spec-
trally detectable, which occurs when the
greenness of the canopy is significantly
different than the soil greenness. An
empirical evaluation of this technique
showed that ty agreed with ground reported
emergence to ~t6 days. This technique
does not require that the crop identity
of a pixel be known, thus it can be used
in conjunction with the agrometeorological
models to predict hypothetical distribu-
tions of development stage within a seg-
ment and then compared to spectrally
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observed stages for labeling using the
approach described above in the APEP dis-
cussion. It should be pointed out, how-
ever, that currently this spectral emer-
gence date does require a full season's
data set, although potentially a mid-
season technique is certainly a possibili-
ty.

Another k2y issue in need of further
study in crop stage of development re-
search is the accuracy requirements. In
some instances, such as predicting the
effects on corn yields of high tempera-
tures during pollination, accuracies of
as little as 1 day may be required. How-
ever, a sensitivity study has not been
conducted to evaluate the effects of crop
stage prediction errors on either crop
yield or crop identification errors.

IX. CROP CONDITION MODELS

As with crop development stage models
crop condition models are also important
to both crop identification and crop
yield estimation. By crop condition
models we generally mean mathematical re-
lationships which are necessary to the
estimation of crop yield. <Crop condition
models quantitatively describe yield in-
fluencing processes such as the ability
of the plant to move water (evapotranspi-
ration), photosynthetic rate and tempera-
ture effects on the reproductive or grain
filling process. The Titerature contains
many condition models for various crop
types. We will not attempt to review
these models here. Suffice it to say,
that the models range from physical models
which simulate key plant processes at a
very detailed level, to less detailed
models, which because of the simplicity
of their input requirements, can be used
in the prediction of crop yields over
large geographic regions. AgRISTARS work
funded by NASA has consisted of investi-
gating the use of Landsat MSS data to im-
prove estimates of solar input to photo-
synthesis and evapotranspiration (ET).

In one such study Daughtry et al.
(ref. 52), utilized the Energy Crop
Growth Variable (ECG) model of Dale (ref.
53) to evaluate the improvements in corn
yield prediction resulting from the use
of MSS data to estimate SRI. The ECG
model is of the form

ECG = D (sriy(srity(eti/petiy (r1h)
i=plant, (15)
mature

where SR' is the daily solar radiation
intercepted by the canopy, PET! is the
daily potential evapotranspiration, and

FT! is a daily temperature function which
relates growth rate to temperature. To
estimate SRI, the authors used the empiri-
cally derived relationship between SRI and
Kauth-Thomas Greenness G.

SRI =-0.1613 +0.0811 6 -0.0015 Gz

(16)
Reflectance data were collected using a
Landsat MSS band Exotech 100 radiometer

at the Purdue Agronomy Farm, throughout
two growing seasons.

To provide a data set in which most
of the yield variation could be ascribed
to differences in seasonal LAI, and
further to evaluate the effects of soil
color on the ability to measure SRI, the
experimental plots consisted of two com-
pletely randomized blocks within three
plant populations planted on three differ-
ent dates, at biweekly intervals. Al1l
rows were north-south in direction to
assure uniform Tighting conditions. Sig-
nificant water stress was not evident
among the treatments. Plots were fertil-
ized to prevent nutrient related growth
limitations.

SRI as estimated from eq.(16) was
used as an input to the ECG model, along
with required meteorological inputs, to
estimate yields for the agronomy farm
plots. The study showed a correlation
between the model estimated and measured
yields of 0.7. SRI was not measured
directly in this experiment, therefore,
the authors could not tell whether their
inability to completely explain the ob-
served yield variations is an effect of an
incompleteness in the ECG model, or errors
in the measurements of input parameters to
the model: for example, errors in the in-
ference of SRI from eq.(16). However,
the study indicates a potential approach
to using satellite data to improve yield
estimates over large areas.

In another AgRISTARS funded study
over a six-state area, Mohiuddin et al.
(ref. 54), at Kansas State University,
evaluated the use of Landsat MSS data as
an input to the Kanemasu computer simula-
tion yield model to improve the yield
estimates from that model over several
AgRISTARS test sites. The Kanemasu model
consists of two parts--an ET model and a
growth model which computes the daily
gross photosynthesis, respiration and dry
matter accumulation. Robertson's bio-
meteorological time scale is used to pre-
dict the wheat growth stages, and the dry
matter is accumulated for these stages to
estimate kernal number, kernal weight,
and grain yield. The Landsat MSS digital
count data for 11 AgRISTARS test sites in
six states was transformed into LAI using
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regression equations developed by Pollock
and Kanemasu which are based on ratio of
MSS channel values and vegetative indices
developed by Richardson and Weigand (ref.
55). Kanemasu's yield model was run with
and without Landsat estimated LAI, using
an assumed, fixed temporal curve for LAI
when MSS data were not used. Yield esti-
mates from ground observers and from the
model predictions were compared on a field-
by-field basis over the test sites for
approximately 200 fields. Although the
procedures for obtaining ground estimated
yields were subject to considerable ob-
servational and sampling error, the dif-
ferences between the ground observed and
Kanemasu model estimates using Landsat
measured LAI had significantly lower mean
square error (793) than did the model esti-
mates (1296) without the Landsat input.
The correlation of the Kanemasu model esti-
mates with the ground observed estimates

for both experimental cases was about 0.65.

The Daughtry study and the Kanemasu
study reported above indicate the prelimi-
nary nature of the work in condition
modeling using Landsat data. But they
also indicate the tremendous potential.

As the Mid and Thermal IR regions become
available through Thematic Mapper, bands
sensitive to the canopy water content and
the temperature of the plant, both key in-
puts to the estimation of Evapotranspira-
tion, should greatly expand the ability

to monitor plant condition.

X. O0UTLOOK

At this point in agricultural remote
sensing, a very general technique for dis-
tinguishing and identifying various
classes of cultural vegetation, based on
temporal profile models and greenness-
brightness transformations has been de-
veloped. These techniques have been
successfully demonstrated for corn and
soybeans near harvest, will likely be
demonstrated in the very near future for
these crops at mid-season, and show good
potential for application to the small
grains. Furthermore these techniques are
based on a sound physical understanding
between spectral features and the agro-
physical features of the crops. Such an
understanding is crucial to extending the
techniques to other regions and to other
vegetation classes.

Perhaps the most significant result
of these techniques is that the Holy Grail
of remote sensing, namely signature exten-
sion, has been achieved over very broad
areas and across several years. The deci-
sion boundary used in these techniques for
separating and labeling corn and soybeans

was developed over 4 segments for one crop
year and has been successfully applied
across the U.S. Corn Belt and into the
Mississippi Delta for three crop years.
The next Togical step is extension to
foreign regions.

Successful signature extension was
essential to completely automated proce-
dures. The corn and soybeans techniques
discussed above have been automated and
require absolutely no manual intervention.
Further, they can be made to run with
great efficiency, requiring seconds of CPU
time per sample unit. The techniques
therefore provide a first capability for
efficiently and cost-effectively identify-
ing corn and soybeans over large areas and
are ready to be evaluated in an application
test. These steps, however, are outside
the charter of the Supporting Research
Project.

Another very important result of this
research is that a very general approach
for vegetation identification, based on the
profile parameter techniques, has been
developed. The extension of these tech-
niques to small grains, rangelands and
important classes of noncultural vegetation
should be relatively straightforward
developments.

Very clearly, the new portions of the
spectral region which will become available
through Thematic Mapper and the Shuttle
Imaging Radar (SIR) experiments should be
rapidly explored. The focus here will be
to reiterate and improve the approach em-
ployed by Kauth-Thomas for Landsat MSS, to
find the information axes in the expanded
multispectral space offered by these new
bands. This should be approached in an
integrated fashion, adding the Mid and
Thermal IR as well as the Microwave to the
VIS/NIR bands already in use.

These investigations should also
focus on defining new sensor and mission
parameters. The questions of spatial reso-
Tution, registration accuracy, overpass
frequency and time of day for overpass
have yet to be fully explored. These ques-
tions will be particularly relevant in the
setting of crop condition monitoring. 1If
we are on the verge of having a solution
to the vegetation identification problem,
we are just getting underway in understand-
ing how to use spectral data to monitor
key plant processes such as evapotranspira-
tion and photosynthesis, and thus to
quantify the effects on yield of drought
stress, winterkill, and disease. These
areas are ripe for exploration and should
yield significant dividends in the future.
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The key here will be to utilize the
existing knowledge base specifying which
biophysical characteristics are associated
with various plant conditions and learn
how to spectrally observe these biophysi-
cal characteristics, e.g., leaf area index,
biomass, ontogenetic stage, canopy water
content, etc. This will require the use
of canopy reflectance models and a strong
supporting field measurement program to
develop these observational techniques.
While some progress has been made in the
area of canopy reflectance modeling, the
resources have been inadequate in the past
to pursue this area fully. NASA has taken
steps to increase the research in this
area by initiating, this year, a program
of Fundamental Research in the area of
Scene Radiation and Atmospheric Effects
Characterization. However of great con-
cern is the effect of reduced budgets on
the field measurements programs.

Another key area will be the investi-
gation of improved information extraction
techniques. The key issues here will be
improved preprocessing and registration
techniques, and improved understanding of
the statistical distributions of the pro-
file parameters, how registration errors
and mixed pixels affect these distribu-
tions, how to model these distributions
in the digital image scene and how to
take advantage of the spatial component of
the data. NASA has also initiated a pro-
gram of Fundamental Research in the area
of Pattern Recognition and Image Analysis.

We are on the verge of an explosion
of techniques and capability for vegeta-
tion and crop monitoring. It is critical
that the U.S. maintain this leadership
position in the technology of crop moni-
toring from space.
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