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ABSTRACT

Here, an algcrithm for interpolation
by piece-wise polynomial approximation has
been developed and implemented. An hyper-
surface approximation is carried out by
quadratic surface defined over two dimen-
sional space to the digital picture in the
neighbourhood of point to be interpolated
using orthogonal polynomials as basis
functions. Kernel for interpolation has
been evaluated with the help of polynomial
basis functions, which enables efficient
implementation of the algorithm.

I. INTRODUCTION

Interpolation is a process of estima-
ting intermediate values of a continuous
event from discrete samples. Interpola-
tion is used extensively in processing
remotely sensed data for correcting var-
ious spatial distortions, magnification
and reduction of imageries to match the
required scale. The limitations of classi-
cal polynomial interpolation approaches
like Lagrange interpolation are well dis-
cussed by Hou and Andrews. They intro-
duced the idea of interpolation by spline
functions. They have developed an algo-
rithm for interpolation using cubic spline
functions. Recently, Keys has developed
an algorithm for interpolation by cubic
convolution method. In cubic convolution
method, he has defined a kernel for inter-
polation. There are some other methods
for interpolation like nearest neighbour,
bilinear interpolation. Cubic convolution
interpolation is more accurate than near-
est neighbour or linear interpolation.
However, it is not as accurate as cubic
spline interpolation method. Often, cubic
convolution is preferred in practice over
cubic spline interpolation method. This
is because of its computational efficiency.
Cubic spline interpolation requires
greater computational exertion than cubic
convolution. This is due to the fact that
in the case of cubic spline, the interpo-

lation coefficients are obtained by solving
tri-diagonal matrix problem and they need
to be evaluated at each data point.

Here, in this paper, an algorithm has
been developed for interpolation by piece-
wise polynomial approximation. Here, the
hypersurface approximation that has been
used by Chittineni3r Morgenthaler and
Rosenfeld® has been utilized. Thus,
approximation has been carried out by
quadratic surface defined over two dimen-
sional space or digital picture function
in the neighbourhood of the point to be
interpolated using orthogonal polynomials
as basis functions. With these polynomial
coefficients interpolation kernel has been
evaluated, which in turn, enables the
efficient implementation of the algorithm.
Thus, the algorithm has an efficiency that
of cubic convolution algorithm at the same
time accuracy wise it is comparable with
earlier spline interpolation methods.

II. HYPERSURFACE FITTING USING
ORTHOGONAL BASIS FUNCTIONS

Let X = (xq, Kir eocencny xn)T be a

point in n dimensional space. Let rg be a
rectangular region in n dimensional space.
Without loss of generality, the coordinate
system is chosen such that centres of the

region rg is at the origin. Thus, we can

write

Yx; =0 for all i (1)
Xj€Xg
Let [Si(x), 0£1<N] be a set of orthogonal
basis functions defined over region rg.
Let f(x) be the digital picture function.
Let g(x) be the estimate of f(x) as

weighted sum of the basis functions,
i.e., N

g(x) = L a;Si(x) (2)
i=0

1983 Machine Processing of Remotely Sensed Data Symposium

26




where, [aj, 021 <N] are set of cosffi— n n 2
cients. The total squared error E“ can g(x) = by + I byxy + I bjix;
be written as, i=1 i=1
2 (8)
E2 = ) (£(x) - g(x)) (3) , D
XET) ) z bijxixj
Using the orthogonal properties of the i;%_l
basis functions, from Eqg. (2) & (3), the
coeff1c1ents aj that minimizes E2 can be where b's are given by,
obtained as,
n m,
. 2 b = a - z _1_2 me:
a; = L f(0si(x)/ L si’(x)  (4) 0~ o " Iymo i
XET ) XET(
bi = ai 15151'1
s = ag <ix<
III. FITTING HYPERSURFACE USING bjp = aj; l<isn
DISCRETE ORTHOGONAL POLYNOMIALS bij - aij 1< i,jf-n i<j (9)
Let ¥4 be'the domain of Xy - Lgt where a's are defined as,
[Pjj(xi), 053<m] be the set of discrete
orthogonal polynomials on 5, 15i<n. an = If(x)
. - . . 0
The set of n dimensional basis functions rp
Si(x), 051<n can be constructed using
one dimensional discrete orthogonal poly- £ (x)
nomials Pj4(xj) as follows: a. = ToXgtix) 1<iln
i~z 2
n n n r, Xi
I Plo(Xl),---,H Plj (Xl)l"'ll-[ Pll (Xl) (5)
2=0 2=0 2=0 X
P.,(x.)f(x) <<
. o iz2'"i 12i”n
It can be shown that the above polynomials ajj = Z—__TT_——_——_' - -
are orthogonal where i#j for any 1. Let rOPi2 (x;)£(x)
my = ink be the kth moment of x; over
domain x;. A few discrete orthogonal g:x %. E(x)
polynomials are given below: 07i ™ 1<4i.9< (10)
a5 = onz MEidsen
i X i
Pio (Xi) =1 é) J To Xlxj J
Pi1(xj) = x4 § The masks for coefficients bj, that result
m; 5 6 by fitting hyper quadratic surface to
Pio(x3) = Xiz e g (6) image function can be obtained from Eqg.
i0 S (8), (9) and (10). For a 3 x 3 two dimen-
m S sional neighbourhood, these masks are
o 3 _ 14 ¢ shown in Fig. 1.
Pig(xi) = %37 - o— g

In terms of one dimensional discrete
orthogonal polynomials, the n dimensional
hyper quadratic surface can be written as

n n n n n
g(x) = ag I Pyg(xy) + I ajPiy1(x;) I Pygixq) + I aj;Pijo(x;) T Pyg(xy)
=0 i=1 =1 Tt e, 1
n n #l #1
Yok RasPia ) TP ta) g
trdTs 2y IV. INTERPOLATION KERNEL EVALUATION
i<3 #1,73
. For equispaced data, continuous inter-
In terms of coordlnaFes Xpr¥ge -eey Xp) polation function, in the case of one
the Eq.(7) can be written as, dimensional data can be written as,
XX
g(X) = ZCkU(—‘H— (11)
k
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In Eqg. (11), g(x) is interpolation func-
tion corresponding to sampled function
f(xx) and Xy are the interpolation notes.
The Cyp's are parameters which depend upon
sampled data. Eg.(l1l) converts the dis-
crete data into a continuous function by
an operation similar to that of convolu-
tion. 1In the case of two dimensional data
for 3 x 3 neighbourhood, Eg.(11l) can be

written as,
Z Z Ci+1,k+m Y
g=-1 m=-1

9(x1,x3)

In Eq.(12), C441,k+m are parameters which
depend upon sampied data. For two dimen-
sional data, Eq.(8) representing hyper-—

surface approximation can be rewritten as,

g(Xl,Xz) = bO + lel

.(13), defines a continuous function at
xl,x and coefficients b's correspond to
sampled data as given by Eg.(9). Eq.(13)
can be rewritten as,

1 1
g(Xl,XZ)

where M M R M2, ¢ Myo and Mlz corre-
sponds go masks sho%% in Fig. 1.
Cyk = f(x1,%9) where f(xlj xzk) discrete

image data sq and s, are given by,
B WS &
°1 7 Th
X1
X, - X
. - 2 2k
2 hX2
where hy, and hx2 are sampling intervals.

It is obvious from Eg. (12) & (14),
that interpolation kernel U(sy,s 2) can be
written as,

_ 2
U(sy,sy) = M0 + Mlsl + Mys, + Mllsl

V. ILLUSTRATIONS

The above developed algorithm has been
implemented on VAX-11/780 computer system.
As an illustration algorithm has been
applied for Landsat data. Input data
corresponds to an area from Landsat scene
161-043. The scene is resampled for mag-
nification by a factor 2, by using cubic
convolution, nearest neighbourhood, inter-

2
+ b2x2 + bllxl

2 2
- ;;l m§;1Cj+l'k+m (M0+Msl+Mzs2+Mllsl +M2252 +M125152)

polation methods, by above developed algo-
rithm. The results are shown in the
plates. Plate 1 corresponds to input data
and plates 2,3,4 correspond to interpo-
lated output. For the example shown above
the nearest neighbourhood took CPU time of
about 3 mts. whereas, cubic convolution
and hypersurface fitting methods took CPU
time of 27 mts. and 28 mts., respectively.

(xl"xlj) (X5"X9y)
hy ' hx2

(12)

2
+ byyxy” + byoxix)

(14)

VI. SUMMARY

An algorithm for interpolation has
been developed and implemented. In the
developed algorithm interpolation has been
carried out by fitting quadratic hyper-
surface, defined over two dimensional
space, that approximates digital picture
function in the neighbourhood of the
point to be interpolated.

The hypersurface approximation is ob-
tained by summation of orthogonal poly-
nomials or basis functions. As an illus-
tration, the method has been applied for
Landsat data and results of the same are
compared with other methods. The developed
algorithm computer efficiency wise compares

+ Mlzsls2 (15)

with cubic convolution interpolation algo-
rithm.
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Plate No.l
(INPUT)

Plate No.2
(NEAREST NEIGHBOUR INTERPOLATION)

Plate No.3 Plate No.4
(CUBIC CONVOLUTION INTERPOLATION) (HYPER SURFACE APPROXIMATION INTERPOLATION)
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