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FAST GEOMETRIC CORRECTION OF NOAA AVHRR

Y. TOZAWA

IBM/Tokyo Scientific Center
Tokyo, Japan

ABSTRACT

Fast and accurate geometric correction
procedure for NOAA AVHRR data is
described. Tne procedure to calculate the
mapping function which gives the coordi-
nate of original AVHRR data if the coordi-
nate of the surface is given uses orbital
data in steal of 3CPs. The QJquestion of
the earth rotation is solved by the geom-
etry used in this paper and expansion of
the equation 5f spherical trigonometry in
the series of the term of the earth rota-

tion. It 1is discussed how to make this
procedure faster without increase of
error. Error is estimated and showed that

it is negligipble in nsual latitude.

I. INTRODUCTION

AVHRR (Advancad Very High Resolution
Radiometar) dita of NOAA series satellites
are very useful to Oceanography, Fishery
and Meteorolojy. AVHRR provides us data
twice a day. More than one ©NOAA series
satellites are ©planned to be operational
in the near future. NOAA satellites are
polar orbital and resolution of AVHRR at
nadir is 1.1 km. This resolution is much
better than that of stationary satellites.

Ooriginal image Output image

Fig. 1 A mapping of geometric correction

AVHRR data can be applied to observe
dynamics of ocean. Application of AVHRR
data is shown in [1]. In crder to know a

temporal change of ocean pattern such as a

change of oceanic front cr movement of
eddies, it 1is very important to correct
AVHPR data geometrically to superpose

them. As AVHER is operational has high
resolution, we need fast and accurate
geometric correction to take advantage of
it.

II. DIFFICULTIES

Geometric correction 1is a mapping from a
coordinate of original data to that of
output image (See Fig. 1). The question
of geometric correction is to find a map-
ping function. In general most fregquently
used method to find the wmapping function
is to make use of GCPs (Ground <Control
Points). 1In this method we assume, first
of all, the form of a mafpping function,
then determine coefficients of the func-
tion using GCPs. But this method 1s not
good for AVHER data. The reasons are as
the follows.

(1) If the application is oceanic, it is
very difficult to find GCPs in the
sea. A GCP is a clearly identified
point whose location we know. GCPs
are required to scatter all over the
output image for better accuracy.

{2) Covering area of AVHRR is so wide (the
swath is up to 3000 km) that the form
of a mapping function pmust be complex
due to earth curvature.

(3) We cannot ignore the rotation of the
earth.
{4) As the NOAA satellites are

operational, interventicn to find GCPs
during the process of AVHRR data must
be minimized.

The rest part of this paper describes how
to determine the mapping function from the
surface locaticn to the —fposition in AVHRR
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Orbital data is
broadcasting.

data using orbital data.
provided from NOAA by
Unfortunately the mapping function is not
derived straijht forward. We solved the
equation by approximation. But error is
very small on normal latitudes.

Table 1 shows the characteristics of NOAA

satellites and AVHRR which relate to
geometric correction.
IIZ. NOTATION

assume the coordi-
surface is not

For the simplicity, we
nate systen of the
geographical system but spherical coordi-
nate whose center is the center of the
earth. We use the following notation.
Height of the satellite (830kam)
Radius of the earth (6370knm)

Angular velocity of the earth
(7-29246x10°5 rad/sec)

Angular velocity of the satellite
(1.04x10"3 rad/sec)

Rs/ Qe (14.2)

Scan angle of AVHRR

Inclination angle {99 )

Time passed after equator crossing
North Pole

Point observed by AVHRR
Crossing point of the
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: Angle PN, {0 = (dp-do1)
¢ Angle Q¥), (due to earth rotation)
: Longitul2 at the equator crossing

latitude when the satellite is at S

. 3 Crossing point of the satellite at
latitude

S : Point of the satellite observing P

d : Distance 5Q (rad.)

f : Distance between P and S (rad.)

1 : Distance PQ ({rad.)

1o : Distance PQ {rad.)

§ : Angle NP

§¢ : Angle NQ, P

= ¢ Angle S9Q?

£ Yt (8§g -T/2)

u
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¢
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Table 1. Characteristics of NOAA
. satellites and AVHRR

Height 830 ~ 870 (km)
Scan angle -55.4 ~ #55.4
Swath 3000 (km)
Resolution 1.1 (km) at nadir
Scan speed 6 (lines/sec)
Period 100 (min)
Inclination angle | 99°

Lengitude of the point ¢,
longitude of the point P
AL : Tifference of lines

<
o
o e

A¢ : Difference of longitude

al : Defined by (20)

b1 : Defined by (21)

c1 : Defined by (23)

s : Size of a pixel of an cutput image
i,3) : {line,column) of the output image
(¢, » 64 ) : location of corner of output

IV. GUIDELINE OF THE EROCEDURE

The mapping function we have to find gives
us the coordinate of the AVHRR data if the
coordinate of output image (i,j) is given.
The coordinate of the AVHER is given by
(&, t+d/Qg) . Therefore the question is to
determine (a, d) if (i,j) is given. Fig.
2 shows the diagram how to calculate (o,
d) from (i,j). The main objective of this
paper is to show how to calculate 0 fast
and accurately from given { ¢, g ). Other
parts in Fig. 2 can be calculated straight
forward.

V. EQUATICNS FOR THE MAPPING FUNCTION
1. MERCATOPR PROJECTION
Coordinate system of the output image may

be arbitrary. Given a coordinate system
we get the function from (i,j) to (¢, ¢ ).

The number in parenthesis corresponds to the equation

bo (6,9)

d=Qep

(5) ¢=l¢p-¢o! (22)

Fig., 2

©

(12)

Diagram t> calculate (g, d)

(10)

l—>sin 1
(13)
(14) e—>sin e—.Ssin f
(8)
cos f—>tan a—>a

(6)

from given (i, 3J)
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Fig. 3 Geometry of inclination angle
We chose the mercator system, so we use
the followinj eguations.
- 4,= 1S (n
¢p ¢ R
0 T, _ jes
tan(2 + E)—exp(61+ = (2)

where s is the size of a pixel of an out-

put image.
2. INCLINATION ANGLE AND LONGITUDE OF THE
SATELLITE AT LATITUDE @

Relation betwszen crossing angle Yat lati-
tude ¢ and inclimation angle at equator is
given by (3).

cosB
cos6

(3)

tatitude of the satellite o at the time t
after equator crossing is given by (4).

cosy=-

sin6=sin(th)sinB (4)

Fig. 4 Gecmetry of scan angle

longitude of the satellite ¢, at latitude
6 is given by (5), which ccntains the tern

to compensate the earth rotation during
the time t.
—bg-tn )=-—S0S(tis)
cos (¢ =do-tl,) coso (5)
Fig. 3 chows the geometry. The equations

(3), (4) and (5) are derived from the

spherical right triangle.
3. PELATION BETWEEN SCAN ANGIE o AND £

f is the distance between F and nadir of
the satellite. £ is related to scan angle
a 0f AVHPP (see Fig. 4). As we showed in
Fig. 2, we reed to calculate ¢ from given
f. The function from f tc o 1is given by

(6).

_ sin f
tan““ﬁiﬁ“"‘“‘“ (6)
- -cos f

where H is the height of the satellite and
R is the radius of the earth. The
equation (6) is easy to derive if you put
dotted line in Fig. 4.

4. GEZOMETRY OF OBSERVED POINT P AND SATEL-
LITE PBOSITICN S

be at S. AVHRR with
scan angle f (which is derived asing (6))
observes the point P whose coordinate is
(%p,86). 0 is the crossing point between
the plane of 1latitude 6 and the orbit
plane of the satellite. As AVHRR is scan-

Let the satellite

ning at right angle to the orbit, angle
PSQ is right angle. As shown in Fig. 5,
let 4 te the distance between S and Q, 1

be the distance between P
Because of
PSQ, we get

and Q, and ¢ be
the spherical
the following

the angle SQP.
rigkt triangle

Rotation

Geometry of Otservation

Fig. 5
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two important equations, (7) and (8).
tan d=cose*tan 1 (N
sin f=sineesin 1 (8)

Note that Q is not the real crossing point
0of the satellite at latitude 9. The earth
rotates while the satellite goes from Qo
to s. Difficulty comes from here.

5. EFFECT OF ZARTH ROTATION

Our goal is to solve f when the point P is
given. Becanse of the earth rotation we
cannot deriva f from coordinatse of P
straight forward. Let p be the angle of
the earth rotation while the satellite
goes along d (see Fig. 6). As the Fig. 6
shows there are fouar cases, A, B, C, and
D. Q, is the real crossing point of the
satellite at latitule 8, but 7, moves fron

O due to the earth rotation p. Let ¢ bhe
the angle ?N),, § b2 the anjyle NQP, §,be
the angle NG, 2, and 1, be the distance

PQ; . Spherical triangles PNQ, and PNQ are
isosceles. These triangles suffice the

equations (9), (10), (11) and (12).

sinly=sin®6+cos?6cosd ©)
cosl =sin?6+cos?6cos (¢-p) (10
__1 ¢ (11)
tan(So ——s—l—n——écotj
C 1 copbe
tané simscot (12)

As shown in Fig. 6 € and
either ty (13) in case A
case P and C.

8 are related
and D or (14) in

m
E=Y+5‘§ (13)
PPN
E=Y=0Ty (14)

We define & by (19).

€o=v%(80-3) (15)

Zguation (10) gives us

relation between p
and 1, and (11), (13)

and (14) gives us

Fig. 6

Geometry of observation with the earth rotation
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relation betwsen p and €. This means the
right hand side of the ejuation (7) is a

function of p. On the other hand 4 is
represented by p as (16) .
a=qQp (16)

where ' is ratio of angular
the satellite and the earth. As the both
sides of the eguation (7) can bhe repres-
ented by p, the juestion becomes to find
which suffices the ejuation (7). We solve
the equation by approximation. That is,
as p is small we expand both sides of (7)
in a series of p. Then we ignore higher
order of p. Each term of (7) is approxi-
mated as per the following. We 1ignore
more than one order of The details of
this expansion are shown in the Appendix
L

velocity of

tan d=d (17)
tan l=tanl, (1=alep) (18)
cos e=cose, (1-b1+p) (19)
where
_, cosfsing
al=t5sT, 51071, (20)

sign is + in zase A and C and - in case B

and D

i fnd tanegsing

= 21
2(1-cos2@sin?d) (21
sign is + in case A and D and - in case B
and C.

1o and & <can be «calculated using (9),
{(11) and (15) if ¢ and p are given.

Assigning (17), (18) and (19) into {7) and
ignoring of more than one order of nakes

(7) the simple eguation of p. The sol-
ution of the sinple eguation is given by
{22) .
1 35

SRR radian 22

P15 T+cT et e
where

s Q

e cosegtanl, (23)

Note that if ¢ is zero- al and c¢l1 become

infinite and is zero. It takes pP/Qe
seconds and tne satellite goes 4= Qp while
the earth rotate p. AVHRR scans 6 lines
in one second, so the expression (24)
gives the difference of the lines in which
the original data that is to be picked up
is.

—+P
AL=1%—x6 (Zu)

AL
S
(0
Fig. 7 Relation between and L
where sign is + in case A and C and - in

case B and D.
Now we get p, then we <can calculate o8
according to the,diagram of Fig. 2.

VI. FAST CALCULATION

As the ©NCAA satellites
much difference cf the

are polar orbit,
lcngitude A¢ cause

a little difference of 1lines AL of ori-
ginal AVHRR data {see Fig. 7). The grid
in Fig. 8 shows this situation. 1In order

to calculate fast we need to avoid unnec-

essary redundant calculation. Relation
between AL and A¢ is given (25).
<6 /dp
AL—QS d¢A¢ (.25)
where
g%pzx{m (a1+b1) - (3cos?1-1)al?-cot¢-al
03 .
: 1 2 COS 6s1n¢b1} (26)
sin“ey 2

Fig. 8 Grid over the original AVHRR
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Table 2 Error of p (the unit is line)
Longituile =25 =20 -15 -10 -5 ) e 10 15 20 25°
Latitude
10° 12330 | 04553 | 0195 | 0.048 | €0.005:=05000 | 0.004:] 0,030 05088 0. 182 || 0.313
20 2.020 | 0.797 | 0.258 | 0.058 [-0.005 | 0.000.| 0.004; 0.024:( 0,056 | 0.092 | 0.117
30 2621 3.003 ( 0.311 | 0065 | 0.005 |0.000-1 0.004 | 0,039 | 0.038:| 0.048 | 0.042
40 2.399 | 1.105 | 0.339 | 0.070 | 0.005 | 0.000 | €004 | 0017 ( 0.030 [ 0-032 | 0.020
50° 2.751 | 1.068 | 0.332 | 0.069 | 0.005 | ©.000 | 6.004% 0.017 | 0.930 | 0.032 [ 0020
60° 2.239| 0.905(0.293 | 0.064 | 0.005| 0.000 | C.004 | 0.020| 0.038 | 0.048 | 0.042
7q 1.536 | 0.663 | 0.232 | 0.055 | 0.005 | ©0.000 | 0.004 | 0.024 | 0.058 | 0-093 [ 0.117
80 0.764 | 0.376 [ 0.151 [ 0.042 | 0.005 | 0:000.[ €.005 | 0033 | 0.102 | 0.216 | 0.376
Derivation of (26) is shown in the Appen- VII. ERROR

4ix II. Note that the expression (26) con-
verges (27) if ¢ becomes zero.
2
do.. cos”y (Qcose Tt (27)

d¢ (cosbcosy+Q) “ ‘cosy

This is derived from the eguations (28),
(29), (30) and (31) which hold when ¢ |is
small.
sing=¢ (28)
sim =1 (29)
l=cosb-¢ (30)
E=Y (31
AL in the hijhest resolution is 1 which

corresponds to 1.1 km. We need to calcu-
late (22) once in A given by (32).
Do, 1 (32)
M N
o

Original AVHRR data

Fig. .9

An error of this method comes from approx-
imation of (17), [(18) “and (19) and ignor-
ing of higher order of P. So the error is
contained only in (22). This error tends
to be  large if ¢ .ds big.er 2latitude is
high. But the maximum of ¢ is limited by
the maximum scan angle. Table 2 shows the
error of p on the unit of line. We assume

Buis - 98uT s the —perded-is 101 min. and
upward cgoing. Note that if latitude is
high reduced scale become small, that is

the distance between the same longitude is
small. For example, the maximum of f is
13° at the latitude 45 . (See coverage
area of Fig. 10)

VIII. RESULTS AND CCNCLUSION

Fig. 11 shows the results of geometric
correction of NOAA AVHRR. Coastal zone
data are overlaid to ©prove accuracy of
this procedure. Original data is shown in
Fligis »9aiihist "isknesths  pact of Japan.
Fig. 10 shows the coverage area of Fig. 9,
which is calculated only from orbital
data. Eunt orbital data which is parameter
of this procedure is not sc accurate. We
used one GCP to transfer and adjust the
image for Fig. 11.

The procedure discussed here is fast and
accurate. As this procedure does not
require human intervention, so this 1is
suitakle «ito, iiprEceess operational AVHRR
data.
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APPENDIX I. Dletails of expansion
Felation between 1 and 0 is given by (10).
Differentiation of both sides of the
equation (10) by p leads to (A.1).

dl__cos?fsin(¢-p) (2. 1)
dp sin 1

The first two terms of Taylor expansion of
tan 1 in a series of p gives (a.2)
1 dl

tan lztanl°+56§TT?(55)p=o'p

=cosly (1-b1+p) (A.2)

Relation betwean 6 and p is given by (12).
Nifferentiation of both sides of the
equation (12) by p leads to (r.3).
1 as_ 1
cos®$ dp 2sinesin?%=P
2

(A.3)

The expression (A.8) is derived from (12).

1 =1+tan?é
cos®$§
sin?0sin28Picos282P
2 2
- - (1.4)
sinzesinz—jg

Assigning (A.4) into (A.3) leids td> (A.5)

das_ siné

de 2(sin295in29%£+00529%3)

sing
2(1—coszesin2$53) (2.5)

The first two terms of Taylor expansion of
cos £ in a series of p gives (A.6).

de

cose=cosso—sineo(dp)pzo'o (A.6)
Equation (A.7) holds because of (13) and
(14).

dE_+g§

dp “dp (A.7)

Assigning (A.7) and (A.5) into (A.6) leads
to (19).

AFEENDIX II. Derivation of (26)

We get (A.8) from (22).

%=a1+b1+c1 (A.8)
Differentiation of both sides of (A.8)

leads to (A.9)
1 dp_dal dbil, dcil

o7 3¢ A dp dé (2-9)
The followings are derived from
definition.

221—cot¢-a1+(3coszl-1)a12 (A.10)

db1_cos?6sing¢ 1 a2

a 5 b1+sin b1 {A.11)

dc1

— ‘I .
P (at+bl)c (A. 12)

Assigning (A.10), (A.11) and (A.12) into

(A.9) results in (26).
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