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ABSTRACT

The improved spatial resolution of the new
earth resources satellites will increase the need
for effective utilization of spatial information
in machine processing of remotely sensed data.
One promising technique is scene segmentation by
region growing. Region growing can use spatial
information in two ways: (1) only spatially
adjacent regions merge together, and (2) merging
criteria can be based on region-wide spatial
features. We describe a simple region growing
approach in which the similarity criterion is
based on region mean and variance (a simple
spatial feature). An effective way to implement
region growing for remote sensing is as an
iterative parallel process on a large parallel
processor. We explore a straightforward parallel
pixel-based implementation of our algorithm and
compare its efficiency with sequential
pixel-based, sequential region-based and parallel
region-based implementations. Experimental
results from on aircraft scanner data set are

presented followed by a brief discussion of
proposed improvements to the segmentation
algorithm.
I. INTRCDUCTION
The new earth resources observation

satellites of the 1980's will provide imagery with
much higher information content than provided by
the Landsat Multispectral Scarners (MSSs) of the
1970's. For example, the Thematic Mapper
(launched in July 1982) has a spatial resclution
of 30 meters in 6 spectral bands (and 120 meters
in one thermal infrared band), while the Landsat
MSS has a spatial resolution of about 80 meters in
4 spectral bands. Planned satellites include the
French SPOT with 20 meter resclution in three
spectral bands (10 neter resolution in a
panchromatic band), and NASA's proposed
Multispectral Linear Array (MLA) instrument with
10 to 20 meter ground resolution in six or more
spectral bands.

Concurrent with the increase of information
content in data from earth resources observation
satellites has been an increase in (ground based)

computer processing capability. Of particular
relevance to image processing and classification
are several large parallel processors under
development. One such processor is the Massively
Parallel Processor (MPP) being developed for the
NASA Goddard Space Flight Center by Goodyear
Aerospace [1,2]. The MPP contains 16,384
processing elements logically connected in a
128-by-128 array with each element having data
transfer interconnections with its four nearest
neighbors. This fixed configuration architecture
contrasts with the reconfigurable architecture of
another (not quite so) large parallel processor:
the ZMOB at the University of Maryland [3]. The
ZMOB consists of 256 {(a "™mob") Z80A-based
microprocessors that communicate via a fast
shift-register bus.

Present operational image processing and
classification a2lgorithms for remote sensing
applications are generally designed for use with
Landsat MSS data on serial computers. In
particular, these algorithms make 1little wuse of
spatial information (an exception is ECHO [4]).
The improved spatial resolution of the new earth
resources satellites will increase interest in the
utilization of spatial information. In the past
it has proved difficult to implement algorithms
exploiting spatial information because of
constraints imposed by the available serial
computers. Fortunately, new parallel computers
such as the MPP and ZMOB are well suited for
algorithms that utilize spatial information.

As a part of NASA Goddard's MLA supporting
science program, we are exploring region growing
as an approach to image segmentation. Region
growing can use spatial information in two ways.
First, region merging is restricted by the
relative spatial location of the regions. Only
regions that are spatially adjacent can merge
together. Second, merging criteria can be
designed to use regional spatial features. A
simple spatial feature we use is the region
variance. Qur segmentation algorithm performs
region growing as an iterative parallel process
which can take full advantage of the parallel
architectures of either the MPP or ZMOB. The
algorithm can be thought of as essentially a
spatially-constrained clustering algorithm that
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¢can use spatial, spectral and/or
information as clustering criteria.

temporal

II. RELATED IMAGE SEGMENTATION RESEARCH

Since the initial development of machine
processing of image data in the late 1960s, many
image segmentation approaches have been
investigated. Fu and Mui [5] present a detailed
survey of image segmentation from the point of
view of the biomedical application of cytology.
They categorize segmentation approaches into three
classes:

1. characteristic feature thresh- olding or
clustering,

2. edge detection, and
3. region extraction.

The bulk of successful approaches in cytology were
reported to fall in the first category;
characteristic feature thresholding or clustering.
No successful application was reported using
region extraction, and edge detection approaches
had difficulties because the "detected edges may
not necessarily form a set of closed connected
curves that surround connected regions."

Schachter et al [6] discuss image
segmentation by clustering of 1local feature
values; an approach that falls in Fu and Mui's
category 1. Schachter et al's application is a
natural scene consisting of a house, lawn, bushes
and sky, which is more like scenes encountered in
remote sensing than those encountered in cytology.
Accordingly, their conclusions may have greater
direct relevance to remote sensing applications
than the results presented by Fu and Mui.
Schachter et al attempted segmentation by
clustering on local features such as gray level,
gradient magnitude, Laplacian, regional standard
deviation, regional total variation of gray level,

and a texture transform. After examining
segmentations based on these features and
combinations of these features, they were

dissatisfied with the results and suggested that
"if we want to obtain better segmentation
performarnce, we must make use not only of
similarities among the image points, but also of
their relative positions." They suggest doing a
preliminary segmentation based on feature space
clusters and then takirg "the pcints belonging to
the clusters as 'core points' of image regions and
...[completing] the segmentation of the image by a
region growing process sta.,ting from these
points." We might suspect from the above that a
region growing (region extraction) approach may be
fruitful in remote sensing applications where it
may not be useful in biomedical applications such
as cytology.

Both Schachter et al and Fu and Mui point out
that region growing approaches have had the
disadvantage that the regions produced depend on
the order in which portions c¢f the image are

processed. But Schachter et al suggest that
implementing region growing as "an iterative
parallel process"™ would overcone the order
dependent problem.

III. REGION SIMILARITY CRITERIA

A key part of any region growing technique is
the similarity test used to determine whether a
region should grow by merging with a neighboring
region or pixel. The earliest attempt at region
growing for remote sensing applications was
reported by Muerle and Allen [7]. Muerle and
Allen tried two different similarity criteria in
their experiments. The first was the
Kolmogorov-Smirnov two-~tailed hypothesis test.
This test '"resulted in mediocre extraction of
objects." The second test was based on "the
average magnitude difference between the two
cumulative distributions." This test performed
better at extracting sensible regions, but Muerle
and Allen were not at all satisfied with their
results. They opined, nonetheless, that the
optimal similarity criteria would be a function of
the means and variances of the regions being
considered for merging.

In their test of similarity, Muerle and Allen
did not assume a form for the distribution of the
samples in each region. In developing their
similarity critericn, Kettig and Landgrebe [8,4]
assumed their region samples followed a
multivariate normal distribution. (A multivariate
rather than univariate distribution was assumed
since they were interested in segmenting
multi-channel scanner data.) It is interesting to
note that distributions with multivariate
distributions can be completely specified by a
mean vector and covariance matrix. The success
Kettig and Landgrebe had with their multivariate
normal assumption is consistant with Muerle and
Allen's concluding remarks on optimal similarity
criteria.

Kettig and Landgrebe used region growing as
an integral part of a sample classification
scheme. Their technique also incorporated a cell
rejection test that split up initial regions that
were not sufficiently homogeneous. They called
their region growing approach conjunctive
paritioning.

In defining their merging criterion, Kettig
and Landgrebe discussed both supervised and
unsupervised approaches. In the supervised
approach, the multivariate normal object class
distributions were assumed to be known a priori.
(They were estimated by clustering techniques.) In
the unsupervised approach, the multivariate normal
object class distributions were estimated
separately for each region at the time the merging
decision was made. Kettig and Landgrebe proposed
a nmnultivariate similarity test based on the
multi-channel mean vectors and covariance matrices
of the regions being compared. This test was not
used in the final unsupervised ECHO algorithm,
however, because the test required that the number
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of pixels in the initial regions had to be more
than the number of channels in the multispectral
data being classified. Since Kettig and Landgrebe
wanted to be able to use 2-by-2 initial regions,
this proved to be a problem even for 4~-channel
Landsat MSS data.

To avoid this restriction on the smallest
size of the initial regions, Kettig and Landgrebe
opted to use a multiple univariate similarity
test. This test is essentially a one-dimensional
version of the multivariate similarity test
applied separately for each channel. Regions are
annexed or merged only when the test is satisfied
for all channels separately.

The similarity test used in our parallel
segmentation algorithm is very similar to a one
dimensional version of the multiple univariate
test used by Kettig and Landgrebe, and can be
extended to the multi-channel case, similarly. As
did Kettig and Landgrebe, we use statistical
hypothesis testing in the development of our
similarity criterion. We test the null hypothesis
that the distributions of the two regions are
identical. Our test combines a test on the means
of the two regions with a test on the variances of
the two regions. Both tests assume the samples in
each region are normally distributed.

Kettig and Landgrebe used a means test which
assumed that the two regions had equal variances.
In our means test, we allow for possibly unequal
variances. We felt we could afford to use this
somewhat more complicated, but more accurate, test
because of anticipated computational gains from
implementing our algorithm on parallel computers
such as the MPP or ZMOB. The means test we use is
referred to in the statistical literature (e.g.
{9,101 as the Behrens~Fisher problem. This
problem has no exact solution, but according to
Sachs [10], it is usually adequate to calculate an
approximate degree of freedom value for the
Student's t-statistic and perform the standard
Student's t-test.

Let
ABS(x) = absolute value of X,

SQR(x) square of x,
SQRT(x) = square roct of Xx,

mi = mean of region i,
vi = variance of region i, and
di = degrees of freedom in region i.
Then
ABS(m1-m2)
t =
SQRT(v1/(d1-1) + v2/(d2-1))
and

SQR(v1/(d1-1) + v2/(d2-1))
rd

SQR(v1/(d1-1)
+
d1 az

SQR(v2/(d2-1))

where t is the Student's t-statistic and rd 1is
rounded to the nearest integer and used as an
approximate degrees of freedom in the Student's
t-test.

We used the F-ratio test for our variance
test. Kettig and Landgrebe used an identical
test. With the above definitions, the F-ratio is
simply F = v1/v2.

For our composite similarity criterion, we
combine the means test and variance test by taking
the geometric meen (or, equivalently, the product)
of the probabilities of random occurence of the
particular t- and F-values calculated. This is
different than the usual practice in statistical
hypothesis testing. Usually, one selects in
advance a particular significance level and
accepts or rejects the null hypothesis at that
significance. In keeping with this approach,
Kettig and Landgrebe preset a significance level
and accepted the null hypothesis only if the two
regions satisfied both the means test and the
standard deviation test separately (for all
channels). We prefer the geometric mean, because
with it we can (to a certain extent) trade off
similarity in mean with similarity in variance.
This allows recognition of the more coarsely
textured ground-cover classes in the segmentation.

We have only used the mean and variance of
regions as features for the comparison of regions.
Other regional features could be used, such as any
of the various texture features discussed in the
literature during the past decade (e.g. [111).
It is not clear, however, whether a simple,
effective similarity criterion can be derived for
comparing some of the more complicated texture
features. It should be noted that the variance
feature we use is sometimes used as a first-order
texture feature.

IV. REGION GROWING STRATEGIES

As noted earlier, earlier region growing
algorithms are processing order dependent. This
is because earlier methods use a sequentially
based region growing strategy. It was impractical
on the serial computers then available to use a
parallel region growing strategy.

Muerle and Allen [7], and Kettig and
Landgrebe [8,4] both used a similar sequential
region growing strategy. The whole image 1is
initially divided into square regions of n-by-n
pixels. 1Initial region sizes of size 2-by-2 up to
8-by-8 were tested. The processing started with
the region in the upper left corner of the image.
Starting with this region, all neighboring regions
were compared in turn with the initial region and
merged with the initial region if the similarity
criterion was satisfied. This continued until the
initial region couldn't grow any further. Then
the next encountered unmerged initial region was
considered for merging with its neighbors, and so
on, until the entire image was processed.
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In addition to the order dependence problem,
this region growing strategy has the fault that
the best match at each step is not sought. Kettig
and Landgrebe [8] considered modifying their
algorithm to find the best match, but found such a
strategy too difficult to implement in a
sequential manner.

The iterative parallel segmentation strategy
that we have developed has the advantage over
earlier methods of doing the best merges first.
Since the globally best merges are done first,
there is no processing order dependence. The
basic idea of the algorithm is to identify the
most similar pair of adjacent regions in the
image, merge them, identify the most similar pair
of adjacent regions in the resulting image and
merge them, etc., until a desired number of
regions remain, or until all pairs of adjacent
regions are not similar enough to be merged
according to a predetermined minimum value for the
similarity criterion. A flow chart of the basic
algorithm is given in figure 1.

A. PARALLEL PIXEL-BASED IMPLEMENTATION

The segmentation algorithm can be implemented
in parallel in a straightforward manner on the MPP
for image sizes with up to 128-by-128 initial
regions. (Image size would be 512-by~512 pixels
with B-by-4 initial regions.) Larger images could
be processed by folding the image in several
layers onto the 128-by-128 processor MPP
architecture, or by hooking initial 128-by-128
region portions together using an edge
initialization scheme. Specifying the algorithm
for large images 1is beyond the scope of this
paper. We will 1limit curselves here to images
that produce initial regions of size 128-by~128 or
less.

In the parallel pixel-based implementation on
the MPP, the entire image is initially subdivided
into n-by-n regions (n=3 and nz4 were used in our
tests). The means and variances (or standard
deviations) of each regicon are calculated as
region features and stored in separate image
planes in the MPP. The degrees of freedom and a
unique region label for each region are stored in
other image planes. These image planes map
directly onto individual MPP processors.

Fach iteration of this parallel pixel-based
implementation is started by calculating, in
parallel, the best similarity critericn values for
each nonredundant neighbor direction (east,
southwest, south and southwest). As the critericn
values are calculated for each direction, the
criterion values are set to zero for neighboring
pixels within the same region. The critericn
values are stored in a real image plane in the MPP
which overlays the region 1label, degree of
freedom, mean and variance image planes. If the
glcbally best similarity critericn value is less
than & preset minimum, the algerithm ends.
Otherwise, the pair of regions labels associated
with the gleobally best similariy criterion value
is noted, and these two regions are merged by

making the appropriate changes in the region
label, degree of freedom, mean and variance image
planes. If the remaining number of regions is
equal to a preset minimum, processing ends.
Otherwise, a new iteration is started.

| set minimum for similarity criterion |

- -

\ 1/

| set minimum final number of regions |

\i/

\{ compute similarity criterion for
/1 all spatially adjacent regions

\i/

! find maximum criterion !
! value for all pairs of !
| spatially adjacent regions |

]
\
/=\
/ is \ _
/ value of\ ! print |}
/ criterion \ ! current|

greater than \ \| region |
the preset / NO /! map and|
\ minimum / ! END |
\ ? / emee—e——
\ /
\_/
i YES
\i/

| identify the pair of regions with |
| the maximum similarity criterion |
! value and merge the two regions |

N

\1/

/=\
/ \ I
/ is the \ | print |
/ remaining \ | current|
./ # of regions \ \! region |
YES \ greater than / NO /! map and!
\ the preset / | END |
\ minimum / = @ —eseeae-

\ ? /
/

Figure 1. Basic flow chart of iterative
parallel segmentation algorithm.
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Each iteration can be performed on the MPP
with  G(1) (the order of magnitude of one)
operations. Since one pair of regions is merged
each iteration, the total number of iterations
necessary to end up with, say, ENDREGIONS number
of regions is NS¥NL-ENDREGIONS. NS and NL are the
number of columns and rows, respectively, in the
mean and standard deviation images. Since
ENDREGIONS is generally much less than NS#¥NL, the
number of operations for the entire parallel
pixel~based implementation of the segmentation
algorithm is O(NS¥NL).

B. SEQUENTIAL PIXEL-BASED IMPLEMENTATION

Our parallel iterative segmentation algorithm
lends itself naturally to the parallel
implementation discussed above. The algorithm can
also be implemented sequentially, with parallelism
mimicked by several passes through the image data.
Alternatively, the number of passes through the
image can be limited to two forward passes and one
reverse pass in which the calculation results are
passed up and down through the image row by row.

As the reader can probably imagine, an
efficient sequential pixel-based segmentation
algorithm is difficult to program, and even the
most efficient takes a relatively large amount of
processing time. If in each iteration we merge
the pair of regions with the best global
similarity criterion value, the number of
iterations necessary is NS*NL-ENDREGIONS. The
number of operations per iteration is O(NS#¥NL).
Since ENDREGIONS would be generally much less than
NS*NL, the number of operations for the entire
sequential pixel-based implementation would be
O((NS¥NL)#*%2),

Alternatively we can merge, say, Q¥100% of
the remaining number of regions each iteration.
The number of iterations in this case is
approximately

1n(NS#*NL/ENDREGIONS)

In(1/(1-Q))

or O(1n(NS#NL)). The total number of operations
for such a sequential pixel-based implementation
is O(NS*NL®*1n(NS*NL)). This compares to the
O(NS*NL) operations required for the parallel
pixel-based implementation.

C. SEQUENTIAL REGION-BASED IMPLEMENTATION

The segmentation algorithm can be implemented
in a region-based mode that takes less than the
O(NS*NL#*1n(NS¥NL)) operations required for the
pixel-based mode. In this implementation we
generate from the initial segmentation a "feature
table™ listing the region label, mean and variance
feature values, and the number of degrees of
freedom in each region. The label and similarity
criterion value of the best neighoring region for
merging is updated every iteration and stored in
the feature table. A separate "neighbor table™ is
generated containing the region label, the number

of regions with larger region label that are are
spatially adjacent to the region, and a list of
region labels of these adjacent regions. (The
neighboring regions with lower region label are
excluded from neighbor table 1list to avoid
redundant comparisons.) A region label merge list
is maintained so that the spatial extent of each
remaining region can be generated after the last
iteration.

The best merges are found each iteration by
searching through the feature table and comparing
regions that are neighbors according to the
neighbor table. Merges are performed by modifying
these two tables and adding to the merge list.

Since the size of these tables decrease with
each iteration, the number of operations required
per iteration drop with each iteration. The
number of regions remaining at the start of each
iteration is:

I-1
NS*NL#( 1-Q)

where I is the number of iterations performed and
NS, NL are as before. Q is the percentage of
regions merged each iteration. The number of
operations performed each iteration is directly
proportional to the number of regions remaining at
the start of each iteration. As was the case for
the sequential pixel-based implementation, the
total number of iterations for the sequential
region-based implementation is approximately

1n(NS*NL/ENDREGIONS)

In(1/(1-Q))

or O(1n(NS*NL)). The total number of  operations
for the sequential pixel-based implementation can
be calculated by summing the number of regions
remaining at the start of each iteration over the
total number of iterations. This calculation
reveals that the total number of operations is
less than O(NS*NL/Q). Since Q is on the order of
0.10, this sequential implementation essentially
requires an order of calculations which is similar
to that required by the parallel pixel-based
implementation. In practice, the sequential
implementation takes more processing time because
the constant multiplying the NS*NL term in the
detailed number of operations equation is larger
for the sequential version. This is because of
the larger amount of disk I/0 and searches
required by the sequential version.

D. PARALLEL REGION-BASED IMPLEMENTATION

The success of the sequential region-based
implementation as compared to the sequential
pixel-based implementation naturally leads us to
wonder if a parallel region-based implementation
might be more efficient than the parallel
pixel-based implementation discussed above. A
parallel region-based algorithm is more naturally
implemented on a reconfigurable parallel computer
like the ZMOB [3] than on a fixed configuration
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parallel computer like the MPP [1,2]. We can only
speculate on this implementation, for we have not
had the opportunity to implement the segmentation
algorithm on the ZMOB. (We have, however,
previously implemented the segmentation algorithm
in sequential and parallel pixel-based modes and
the sequential region-based mode.)

The parallel pixel-based implementation of
the segmentation algorithm on the MPP does not use
all the processors efficiently in the later
iterations. Processors that correspond tc pixel
locations interior to regicns perform no useful
work Dbesides recording the image map locations
covered by the region. The segmentation algorithm
coculd be implemented on the ZMOB so that each
processor corresponds to a region or set of
regions rather than an image map location. The
ZMOB can be reconfigured each iteration so that
regions communicate only with their current
neighboring regiocns, simplifying keeping track of
which regions are neighbors to each other. As
with the sequential version, a region label image
merge list must be maintained to regenerate the
spatial extent of each region after the 1last
iteration.

The relatively small number of processors
(256) contained in the ZMOB compared the MPP may
offset the configuration advantage the ZMOB may
have over the MPP. The MPP with 16,384 processors
in a 128-by-128 array can efficiently process a
256~-by-256 image with a simple image folding (each
processor process four pixel locations). Even
with a 128-by-128 inital region image, the ZMOB
with its 256 processors would have to do a

substantial amount of processing in serial, rather:

than parallel, in the early iterations co¢f the
algorithm.

Even with a 16,384 processor ZMOB, the
reconfigurable architecture may still not offer a
subtantial advantage over the fixed configuration
MPP. This is because the limiting process for
both the parallel pixel-based and parallel
region-based implementations is the performing of
merges. The order of operations required to run
the segmentation algorithm on an expanded ZMOB
would still be O(NS¥NL) - the same as for the MPP.
The constant multiplying NS*¥NL in the detailed
operations equation may be slightly lower for the
ZMOB implementation, however.

Even though the order of the number of
operations is the same for the ZMOB and MPP, we
still would anticipate a significant advantage for
the ZMOB in the later iterations of the algorithm,
when the number of regions drops closer to 256.
We would suggest that an ideal implementation of
our segmentation algorithm would use the MPP in
the early iterations and shift to the ZMOB in the
later iterations.

.
P
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Figure 2. Panchromatic aircraft scanner image
of study site shown at l0-meter resolution.

Figure 3. $-by-4 pixel region initialization.
Mean (upper) and standard deviation (lower) images
are shown.
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Figure 4. Segmentation result after 43 iter-
ations. Mean (upper) and standard deviation(lower)
images are shown.

V. EXPERIMENTAL RESULTS

We have tested our segmentation algorithm on
Daedulus scanner data from over the Maryville, TN
area which was collected by Geospectra Corp. of
Ann Arbor, MI. We used a panchromatic combination
of the three channel data that was formed by
taking the square root of the sum of the squares
of each channel and rescaling the result. (An
average of the three channels could have been used
just as well.) We selected the 232-by-256 portion
of the 10-meter resolution panchromatic image
shown in figure 2. We divided this image into
4-by-4 regions and calculated means and standard

deviations for these regions. The resulting
J0-meter resolution mean and standard deviation
images are shown in figure 3. The darker areas in
the panchromatic image are generally forested
areas (esp. in the wupper right), residential
areas can be seen in the wupper left, and
agricultural fields can be seen mainly in the
lower half of the image. The bright area near the
lower right corner is a land fill.

We used the sequential region-based
implementation of our algorithm to segment the
image. After 43 iterations we had 160 remaining
regions. We allowed merges down to a minimum
similarity criterion value of 5.0E-5. Figure U4
shows the resulting mean and standard deviation
images. The forested area in the upper right was
not cleanly detected, with a portion of it being
joined with a residential area. Other forested
areas were detected, however. Residential areas
were detected as several smaller regions rather as
one large region. The algorithm worked best on
the agricultural areas, where individual fields
were cleanly picked out. These agricultural
fields held together even when the minimum
criterion value was allowed to drop to as low as
2.0E-10. The forest and residential areas were
totally confused at this lower level, however.

VI. DIRECTIONS FOR FURTHER RESEARCH

As we mentioned earlier, Schachter et al
suggest doing a prelimirary segmentation based on
feature based clusters and completing the
segmentation using region growing. Zucker [12]
suggests a similar, but less elaborate, global
initialization technique for improving the
performance of region growing approaches to image
segmentation. Zucker suggests that histograms of
local features could provide a basis for
initialization of a region growing algorithm.
Such local features could be pixel gray level, or
the local region mean and variance features we use
in our segmentation algorithm. Histograms on
these local features could reveal image areas that
are relatively constant in the select features.
These areas could then be used as initial regions
for region growing. We would hope that such an
approach would not only improve the performance of
our algorithm, but also reduce the total number of
iterations required. We plan to pursue global
initialization in the near future.

Schachter et al [6] suggest incorporating
discrete or probabilistic relaxation into future
segmentation algorithms based on region growing.
We have made limited tests of a simple relaxation
technique that allows a pixel on a region edge to
change its region identification to that of a
neighboring region at any iteration. The
technique is based on the fact that as a region
grows, its feature values gradually change.
Occasionally the feature values may change
sufficiently that some pixels the were previously
merged into the region are actually more similar
to a neighboring region. When such a pixel is on
a region edge adjacent to a region that is now
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more similar to it than its current region, our
augmented algorithm changes the region membership
of that pixel to that of the adjacent region.

We must await the installation of the MPP at
NASA Goddard's research facility before we can
test this approach on images which generate
initial region images that are much larger than
16-by-16 (e.g., a 6U4-by-64 original image
initialized with U-by-4 pixel regions). This
region switching approach cannot be implemented in
a region-based mode, so we must rely on the MPP to
provide practical processing times. However,
based on limited test results on 16-by-16 initial
region images, we feel that this relaxation
augmentation may reduce the confusion between
forest and residential areas seen in the results
discussed in section V above.

VII. CLOSING REMARKS

Region growing, implemented as an iterative
parallel process, is a promising segmentation
technique that can effectively utilize the spatial
information contained in the higher resolution
imagery gathered by the newer earth resources
satellites. We have described a simple region
growing algorithm that use regional means and
variances as merging features, and have discussed
parallel and sequential implementations of this
iterative parallel algorithm. This simple
segmentation algorithm can be improved by
appropriate region initialization and by adding on
a form of relaxation to the merging process.
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