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ABSTRACT

In agricultural applications of remote sens-
ing, linear transforms of Landsat data, such as
those of Kauth and Thomas, are known to be highly
effective both for data compression and enhance-
ment of crop identification accuracies. Typical-
ly, such transforms are based on the time-trajec-
tory of crop pixels through measurement space as
the crop increasingly obscures the soil, matures,
scenesces, and is harvested. 1In natural vegeta-
tion applications, temporal variations are less
important—— life-form differences among vegeta-
tion types lead to distinctive signatures for na—
tural vegetation types that are more or less dis-
tinctive, independent of season. However, vege-
tation signatures are greatly influenced by their
topographic position on the landscape, due to fac-
tors of differential illumination and complex bi-
directional reflectance distribution functions.
Thus, the question arises whether there are one
or more transforms of lLandsat data, beyond those
already explored, that can accentuate the separa-
bility of natural vegetation classes in areas of
diverse topographic relief. To answer this ques-
tion, we investigated eleven transforms of four
Landsat MSS channels.

Two contrasting methods were employed to

rate the information content of the eleven trans-—
forms and four raw Landsat channels: divergence
analysis and classification accuracy. Although
the divergence analysis appeared to be quite sen-
sitive to minor variations in computation induced
by quantization of the raw Landsat data, diver-
gence values were highest for the three transforms
(9, 10, and 11) in which the second eigenvector,
E2, appeared in the denominator. This result sug-
gests that the second eigenvector performs a use-
ful scaling function. For the Landsat image ana-
lyzed, the second eigenvector emphasizes the dif-
ference between MSS7 and the weighted sum of MSS4
and MSS5. Since this linear function is orthogo-
nal to the first eigenvector, which weights all
MSS bands positively and accounts for the overall
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"brightness' of the image, it reduces the effects
of shadowing and differential illumination on ve-
getation signatures, producing the observed en-
hanced values for divergence.

In accuracy analysis, transform 11, the ratio
of MSS4 and 5 and MSS6 and 7 averages (RAVE) divi-
ded by the second eigenvector (E2), archieved
highest accuracies, followed by raw MSS4 and MSS5
bands. Band ratios such as RAVE are known to re-
duce the effects of differential illumination, but
do so in a fashion clearly different from linear
compounds such as E2. Since only one multichannel
transform performed better than the two raw Land-
sat channels, the results suggest that transforms
should be chosen with care for a particular appli-
cation to natural vegetation.

1.0 BACKGROUND

Resource managers of state, federal, and pri-
vate agencies constantly face the need to assess
and inventory large areas of natural land cover in
a timely and cost-effective manner. Thus far,
Landsat classifications have been helpful in pro-
viding the data needed for such inventories. How-
ever, classification accuracies degrade when clas-
sification must distinguish between land cover
classes which are similar in vegetation form and
pattern, but differ in species composition. Spec—
tral information alone is often insufficient to
accurately distinguish stands of different conife-
rous tree species, or to differentiate various
types of chaparral. This failure can make resource
management difficult when the stands or vegetation
types require widely different management prac-
tices.

Early research in the Doggett Creek vicinity
of the Klamath National Forest (Strahler, et al.,
1978) demonstrated that the incorporation of U.S.
Geological Survey-Defense Mapping Agency elevation
and derived compass-aspect information with multi-
date Landsat spectral data in conventional super-
vised classification of western North American fo-
rest species could produce average accuracies as
high as 85 percent. The use of elevation data
with spectral data in unsupervised classification,
however, resulted in the swamping of spectral in-
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formation by the topographic data.

Subsequent research (Strahler, 1981) showed
that a standard deviation texture channel (de-
rived from MSS5) combined with Landsat spectral
data in an unsupervised procedure could produce
classes that differentiated timber stands of uni-
form height and density reasonably well. When
combined with an image predicting regional forest
type (which denotes species composition) using
elevation and aspect data, accurate timber stra-
tum maps resulted that could be used to allocate
timber volume samples as well as provide other
forms of useful timber management information.

The combination of spectral tone, spatial
texture and independent terrain information,
therefore, appears to provide sufficient informa-
tion for automatic characterization of natural
vegetation resources. Tone is most important for
recognizing the existence and presence of a fea-
ture. Texture combines with tone to measure local
tonal variation. .The topographic terrain infor-
mation provides a powerful independent parameter
well known for improving forest classification ac-
curacies.

The work of several researchers in agricul-
ture (Kauth and Thomas, 1976), geology (Soha and
Schwartz, 1978) and forestry (Deering, et al,
1975) have suggested that certain transforms of
Landsat data can enhance inherent information or
at least permit a reduction in the number of data
channels without substantial data loss (data com-
pression). Use of such transforms offers a poten—
tial for improved classification accuracy with re-—
duced computer costs. A single enhanced channel
could prove particularly useful as a base for the
standard deviation texture convolution. The pur-
pose of this research is to investigate several of
the better known Landsat transformations and as-
sess their utility for accentuating the separabi-
lity of general coniferous forest and related ve-
getation classes.

The computer processing for this research was
carried out at JPL and UCSB using the Video Image
Communication and Retrieval (VICAR) image proces-—
sing system. Under continual development at JPL
for the past ten years, the VICAR system was ori-
ginally designed for enhancement of satellite pic-
tures from the national's unmanned space explora-
tion programs such as Mariner, Viking and Voyager.
VICAR manipulates digital images expressed as
eight-bit bytes, ranging in value from zero to
255. As part of the log-in procedure under which
Landsat images in CCT format are converted to
VICAR format, six and seven-bit sensor values are
stretched to eight bits.

1.1 STUDY AREA

The study area used in this research is loca-
ted in the Doggett Creek vicinity of the Klamath
National Forest. The area comprises about 220 sq.
km. of private and publicly-owned forest land in
Northern California near the town of Klamath

River. Located within the Siskiyou Mountains,
elevations in the area range from 500m at the
Klamath River, which crosses the southern portion,
to 2065m near Dry Lake lookout on an unmanned
summit.

A wide variety of distinctive vegetation
types are-present in the area. Life-form classes
include alpine meadow, fir park, pasture, crop-
land, and burned, reforested areas. Forest vege-
tation includes, from high elevation to low ele—
vation, such types as noble fir, mixed fir (noble,
red and white), douglas fir, ponderosa pine-in-
cense cedar, pine-oak, and oak-chaparral. Thus,
the topographic and vegetational characteristics
of the area are well differentiated.

2.0 LANDSAT TRANSFORMS

A textural transform of the type used by
Strahler, et al. (1979) can provide transformed
information only at a level relative to the
amount present in the original data. A channel
endowed with more pertainent information than an-
other will provide more textural information af-
ter transformation. Landsat data, however, con-
tain a range of vegetation reflectance informa-
tion apportioned over four separate bands covert-
ing the 0.5 to 1.1 micron wavelengths. While
MSS4 band provides most coniferous vegetation in-
formation, there is still important data to be
found within the MSS5 and infrared channels. Pro-
ducing textural transforms of all four bands
would provide too much non-vegetation information
as well as over emphasize the redundant nature of
Landsat data due to high channel intercorrela-
tions. The redundant property of Landsat data,
however, makes it a candidate for data compres-
sion. A single channel of compressed Landsat da-
ta could provide a powerful foundation for a tex-
tural transform.

Many techniques such as ratioing, principal
components and discriminant analysis, have been
used for the purpose of removing redundancy while
retaining desired information. The success rate
tends to vary with the purpose and procedure that
are utilized. Considerable success has been re-
ported in the literature when the emphasis has
been on enhancing one particular feature such as
gypsy moth defoliation (Williams, et al., 1979)
or the urban/rural boundary (Friedman, 1980).
Often, enhancement of one feature coincidentally
enhances another. In this research, several of
the more common compression techniques are inves-—
tigated to determine if any have the potential
for condensing Landsat data into a single channel
which enhances the range of coniferous species-
type classes. Fifteen channels of data are in-
vestigated.

Two families of data compression procedures
have tended to be most popular largely because of
the ease with which they can be formed: ratioing
and principal components analysis (PCA). The
most common ratio for vegetation purposes is:
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[¢)) MSS 5
MSS 6

(or visa versa or MSS7 in lieu of MSS6) as sug-
gested by Kriegler, et al., (1969), Billingsley
(1973), Vincent (1973) and Maxwell (1976). The
ratio:

(2) MSS 5
MSS 4

has also been used to emphasize just the key ve-
getation channels within Landsat data. A slight
variation of this theme which retains the use of
all four bands is the ratio of averages (RAVE):

3) MSS4 + MSS5
2

MSS6 + MSS7
2

and the ratio of sums divided by the differences
(RASD) :

) (MSS4 + MSS5) / (MSs6 + MSS7)
(MSS6 + MSS7) - (MSS4 + MSS5)

Richardson and Weigand (1977) evaluated several
vegetation models and found TV16 (Transform Vege-—
tation Index with MSS6) as suggested by Rouse, et
al., (1973) and Deering, et al.,(1975) to be the
most useful for estimating relative greeness:

(5 \/ MSS6 — MSS5 +0.5

MSS6 + MSS5

They also developed the PV16 (Perpendicular Vege-
tation Index) to distinguish the spectral res-
ponse of green vegetation from the response con-
tributed by background soils:

6) [ (soTL5 - Mss5)? + (SOTL6 - MsS6)>
where: SOIL5=-0.498+0.543*%MSS5+0.498*MSS6

SOTL6=2. 734+0.498*MSS5+0.498*MS56

Ratioing techniques are popular because they can
often be easily performed digitally as well as
photographically, and they also tend to reduce
the effects of shadowing and atmospheric degrada-
tion.

Principal Components Analysis (PCA) techmni-
ques have also been found to be useful for data
compression (Ready and Wintz, 1973, Fontanel, et
al., 1975, and Jenson and Waltz, 1978). Principal
components seeks to determine the best orthogonal
linear combinations of data which can account for
more variance in the data as a whole than any
other linear combinations. The principal compo-
nent was automatically scaled after transforma-
tion so that its histogram assumed a distribution
centered at DN of 128, and the spread encompassed
the full 256 DN range. With Landsat data, the

first principal component:

(7) .2120%MSS& +.2962*MSS5+.6051*MSS6 +
. 7079%*MSs7 (E1)

weights all four channels positively according to
the magnitude of their standard deviatioms. It
thus generally reflects overall brightness, and
is likely to be strongly influenced by differen-
tial illumination. The second principal compo-
nent:

(8) .4648%MSS4+.7847*MSS5-.0753*MSS6-
. 4032*MSS7 (E2)

emphasizes the difference between visible and in-
frared bands; and contains the feature-specific
information derived from the four Landsat chan-
nels that is the most useful PCA contribution to
feature data compression. Haralick, et al. (1972)
found that of the several transforms he tested,
the principal components procedure best approxi-
mated the original picture.

A variation of the above ratioing and PCA
techniques combines the two to produce the follow—-
ing channels:

(9) MSS5 / E2
(10) (MSS5 / Mss6) / E2
(11) RAVE / E2

Conceivably a synergism could occur as a result

of transforming the four Landsat channels by the
two very different mechanisms, and ratioing the

two products (as in the case of RAVE/E2).

The last four channels of data to be tested
consist of the Landsat bands, included so as to
provide a scientific control to the experiment as
well as provide a relative measure with which to
rate and evaluate the merits of the other chan-
nels. Most remote sensing scientists are fami-
liar with the relative information content of
these channels, and can therefore use them to
place the ratio and PCA channels in perspective.

3.0 TRANSFORM EVALUATION

Two constrasting methods were employed to
rate the information content of the fifteen se-
lected channels. The first is a divergence ana-
lysis test and the second is back-classification
of the training sites. Both methods use training
site data as the basis for their calculations.

3.1 DIVERGENCE ANALYSIS

Divergence analysis uses a covariance-weight-
ed distance measure of class means to determine
the total separability of class categories within
a given channel. The total divergence value that
is calculated can then be used to rate the indi-
vidual channels, with the underlying assumption
being that, for the purposes of this research,
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greater separation is an indication of more "in-
formation." Divergence analysis has been employed
by Shlien, et al., (1973) and Goodenough and Nar-
endra (1976), and is a common-place practice among
users of LARSYS.

Results of the divergence analysis are re-
ported in Table I, but are not considered reli-
able. The technique requires that the spectral
data within the training sites have a Gaussian
distribution. This is a common requirement among
multivariate techniques including maximum like-
lihood classification that is often relaxed be—
cause it is virtually impossible to obtain. How—
ever, there are limits to which the Gaussian rule
can be relaxed. The fundamental problem in this
case lies with the nature of natural vegetation.
Unlike agricultural training sites which tend to
be homogeneous, well defined, and easily delineat-
ed, natural vegetattion nearly always has a high
variation due to spacing of the vegetation (which
lets in ground signature), modulating height,
health, and other factors. Every effort was made
in the selection of training sites to make them as
homogeneous and demonstrative of the class to
which they represent. However, many of the va-
riations typical of natural vegetation do not ap-
pear in a single Landsat channel. Thus, training
sites delineated based on MSS5 that look homoge-
neous is MSS5 may be rather heterogeneous when
viewed in MSS7 or MSS4. This problem is particu-
larly compounded in the ratio process when the
second eigenvector image is involved. When a set
of overlaying pixels from the four Landsat bands
are very contrasting, the principal components
process can produce an unusual grey value (DN).
When such an odd DN is divided into its band 5
counterpart (as in the case of 5/E2), a very large
or small output DN value may result that is un-
characteristic of the surrounding norm (Figure 1).
If this high variance pixel falls in a training
site, it will artificially raise or lower the mean
of the training class. The divergence analysis
technique, which relies on the class means for de-
termining separability, will then be inflated pro-
ducing unreliable results. Thus, divergence ana-—
lysis is likely to be misleading in the analysis
of classes of natural vegetation.

3.2 CLASSIFICATION TEST

Back-classification of training sites is a
technique that allows easy and rapid comparison
of relative accuracies; however, its use for mea-
suring absolute accuracies is suspect. The tech-
nique employs the same training sites areas uti-
lized in the classification process to determine
the number of correctly classified pixels. Thus,
the same set of data used to train a classifier is
also used to evaluate it. While this method has
obvious short-comings for evaluating the exact ac—
curacy of a classification, it is an acceptable
technique when relative accuracies are to be com-
pared.

The results of separately back-classifying
the fifteen channels are shown in Table I. As

would be expected for single channel classifica-
tions, the numerical accuracies are low. No
"tuning" of the classifications was performed to
enhance accuracies.

3.3 RAVE/E2 ANALYSTS

Of the fifteen channels investigated, the
RAVE/E2 (Figure 2) contained the most vegetation
information, with an average classification accu-
racy of 13.27% compared to 11.7% for the closest
rival. This channel represents an enhancement in
information over the raw Landsat classification.
This is apparent from the number two position of
MSS4, which theoretically should be the best sin-
gle Landsat band for vegetation because of the
strong reflectance peak of coniferous forests at
0.55 microns. Channels scoring lower than MSS4
would indicate a loss of information content, and
channels scoring higher would represent a gain in
information.

Other evidence suggesting utility for the
RAVE/E2 channel can be found by looking at the
percentages of unclassified pixels. In addition
to having the highest classification accuracy,
the RAVE/E2 channel also had the lowest percen-
tage of unclassified pixels: 37.9%. This com-
pares to 41.7% for MSS4 and 58.9% for MSS5. Thus,
not only did the RAVE/E2 channel classify more
pixels than the other channels, but it also clas—
sified a higher percentage of them correctly.

The mechanism which gives the RAVE/E2 chan-
nel an advantage over the others is likely related
to an overall reduction in the effects of shadowing.
Comparison of the transformed image with the ori-
ginal Landsat band 5 suggest that several of the
steeper slopes that appear darker in the original
imagery are being equalized in grey tone with re—
lated timber types on flater slopes in the trans-
formed image. Indications of this effect appear
in the left-middle bottom and upper middle-right
edge of the imagery, where opposing slopes of
similar types but differing DN due to shadowing
in the original imagery receive similar DN in
the transformed data. Classification accuracy
would certainly be expected to improve if similar
timber types on differing slopes were to receive
similar DN ranges.

An overall reduction in the effects of sha-
dowing could be expected from the RAVE/E2 channel.
When shadowing affects all four Landsat bands
equally, ratioing is known to remove most of the
negative effects.” At the same time, the second
eigenvector from PCA displzys most of the infor-
mation left after overall brightness, as in-
fluenced by relative illumination, is accounted
for in the first eigenvector image. Note that
topographic shadowing is very evident in the
first eigenvector image (Figure 3) when compared
to the second eigenvector (Figure 4). Tt would,
therefore, seem very plausible that the ratio of
two transforms that are each known to compensate
for differential illumination in a unique way
could result in a synergistic output of superior
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quality to either taken separately. Further re-
search is necessary to fully investigate and con-
firm this hypothesis.

The quality of the RAVE/E2 channel is heavi-
ly influenced by the PCA factor loadings. Va-
riations in these values due to the presence or
absence of clouds or snow, for example, could
negatively or positively effect the discrimina-
tion capability of the RAVE/E2 channel. Table
II shows the varying results that such effects
can have. A minor change in the infrared load-
ings (.4648, .7847,-.0752, -.4031) improved clas-
sification performance to 14.0%, and had an ef-
fect in helping to discriminate open canopy Pon-—
derosa Pine (POPO). The number of unclassified
pixels dropped to 33.2%*. Other changes had
significantly negative effects. Rounding the
factor loadings to (.5000, .8000, 0,-.4000) pro-
duced the worse average coniferous classification
accuracy of 4.6%

Indiscriminant scaling during creation of
RAVE/E2 can also have deleterious effects.
Throughout all ratio channel processing, the
attempt was made to produce an output standard
deviation that was close to or within the
Landsat range, since previous research had indi-
cated that channels with extremely small local
standard deviations, such as those typical of di-
gital elevation, could easily swamp spect-
ral data in an unsupervised classification
operation. Thus, the RAVE portion of the
RAVE/E2 transform was multiplied by 110, and af-
ter division by E2 ( which was initially scaled),
the quotient was multiplied by 60 ( denoted as
110;60). This produced a standard deviation re-
sonably close to the range of Landsat standard de-
viations.

The (110;60) scaling combination produced
the best results for the RAVE/E2 channel. A neu-
tral scaling of (100;100) produced poor results
substantiating the need for a scaling of some de-
sign. Minor adjustments (Table II) to (100;60)
and (100;50) produced some rather significant
changes in individual category accuracies sug-
gesting that like PCA, ratio scaling is a criti-
cal component of the channel transformation pro-
cess.

That ratio transforms can provide a valu-
able tool for selective enhancement of specific
features is very evident in this research. While
the RAVE/E2 channel would appear to offer the
best all around general enhancement of coniferous
forest vegetation, the (5/6) / E2 channel might
be better for examination of open canopy douglas
fir, or the green band for high and low density
white fir. The best channels for specific coni-
fer and general vegetation types are highlighted
in Tables I and II.

4. CONCLUSIONS

Coniferous Landsat data can be compressed

into a single channel containing more information
than any of the original individual inputs using
the following transform (RAVE/E2):

((((MSS4+MSS5)/2)/((MSS6+MSS7)/2)*110) x60

Second Eigenvector

where the second eigenvector has linear factor
loadings of (.4648,.7847, -.0752,~.4031) and was
scaled to spread the distribution over 256 DN le-
vels with the center at 128. This information
gain appears to be unique among similar transforms
discussed in the literature, which all suffer an
informational loss during the compression process.
However, RAVE/E2 is a technologically complex
channel to generate, and considering the radio-
metric variation common between Landsat scenes, it
it unlikely that the PCA loading disclosed here
would be of wide applicability. It is probable
that Landsat MSS4 which ranked second best in co-
niferous information content is the best all-
around dependable single channel of data. The ex-
tra effort to utilize transformed Landsat channels
will probably provide only a subtle, if any, im-
provement in average classification accuracy. For
enhancement of specific classes, the use of cer-
tain transforms may be quite beneficial (Table I).
But for the general classification of coniferous
forest Landsat data, the raw channels will pro-
bably provide a result comparable to the best of
any classification based on transformations of

the raw channels tested herein.
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TARLE 1 - CLASSIFICATION AND DIVERGENCE RESULTS

Overall and individual classification accuracies for each of the fifteen tested data channels are provided below.
Outlined boxes highlight the best channel for a given class category. Total divergence scores are not considered

reliable.
AVERAGE AVERAGE
SMALL COONIFEROUS OVERALL
OWEL W P, o RF, o W, IF; POP; MEAD SPARSE THREES GRASS SCALING ACCURACY ACCURACY — DIVERGENCE
by RAVE m 0 11.1 @ E 12.8: 5.2 9.4 E 0.5 0 110;60 13.2 13.8 1153
B2
2 [ ] 15.6 1.1 o @ 2.1 E 12.7 7.6 13.7 0 - 11.7 11.5 690
3 R0 10.6 10.0 8.0 10.0 4.2 13,2 10.6 11.9 6.6 4.8 5.9 6.0 7.1 - 9.3 8.4 836
4 E/E2 15.3 7.4 0 16.4 17.0 15.6 3.0 © 1.8 © 3.6 11 11.5 100 7.65 7.1 952
S 5/6 6.9 5.9 4.5 5.8 12.7 10.8 6.7 1.5 ] 9.0 9.2 8.8 6.2 9% 7.2 7.5 760
6 RAVE 10.6 5.9 3.8 4.7 10.6 10.8 12.1 2.7 2.8 8.3 1.5 6.0 5.6 110 6.7 6.6 kz
7 V16 8.3 5.1 6.2 8.2 8.5 9.6 6.7 8.3 0 5.5 1.7 9.9 3.4 200 6.6 6.3 55
8 IR2 9.2 5.1 4.5 6.4 14.8 9.6 0 6.7 4.7 0 5.8 1.1 2.1 - 6.5 5.4 645
9 %éﬁ 18.2 2.9 10.6 14.4 3.0 2.0 2.8 1.1 4.1 1.1 19.0 90;100 6.2 8.7 1025
10 S5/4 10.1 7.4 [} [} 8.2 E 2.8 7.6 11.8 ¢ 3.4 100 5.5 5.9 7n1
11 RATSD 15.3 10.0 6.2 [} 8.5 7.2 [} 7.5 0 5.5 5.3 E 4.6 20 4.9 7.9 800
12 B2 5.7 4.8 3.1 5.8 6.3 0 8.8 4.3 2.8 4.8 5.3 3.3 5.0 - 4.5 4.6 794
13 V16 7.8 5.5 4.8 7.6 4.2 6.0 [} 3.5 0.9 0 5.1 5.5 5.3 1.9 4.1 4.3 625
14 IRl 7.8 6.6 14 4.7 6.3 2.4 8.5 4.3 0 3.4 5.3 3.8 6.8 - 4.1 4.6 610
15 £l 1.7 3.3 1.3 2.9 2.1 1.2 0.9 0.7 o 2.0 6.1 2.2 3.4 - 1.6 2.1 662
Nurber of 383 268 286 169 47 83 327 2% 105 144 633 179 320
Training class
Pixels
TABLE II - PCA AND SCALING EFFECTS
Overall and imlividual classification accuracies for each of the fifteen tested data channels are below.
PCA Test asmmes (110;50) Scaling. Scaling test uses PCA factor loading of (.4648, .7847, -0.753, -.4032). Outlined boxes
highlight the best channel for a given class category.
PCA TEST
AVERAGE AVERAGE
PEFCENTAGE CONIFEROUS  OVERALL
M F, R, W, [F; POP; MGAD SPARSE TREES GRASS  UNCLASSIFIED ACCURACY  ACCURACY PCA FACTOR LOADINGS
19.0 29.7 18.0 10.6 4.0 m 15.9 37.6 0 0 33.2 14.0 14.2 .4648, .7847, -.0752, -.4031
19.9 0 ] 18.0 10.0 @ m 15.9 36.8 0 0 47.5 8.5 10.8 4648, .7847, -.0742, -.4021
18.4 0 0 16.8 13.4 3.2 5.6 17.3 36.8 o 45.9 8.5 10.8 .4648, .7847, -.0762, -.4041
19.3 19.8 0 10.5 0 18.0 12.1 3.2 5.6 16.6 36.8 0.5 45.5 8.5 10.9 .4638, .7837, -.0752, -.4031
21.0 15.9 © 9.4 © 18.0 12.5 4.7 5.6 15.9 23.9 [ 51.5 8.3 9.8 .4658, .7857, -.0752, -.4031
15.0 12,2 o 9.4 0 0 7.9 4.7 2.8 16.6 29,2 0.5 56.9 4.6 8.7 .5000, .8000, O, -.4000
14.1 16.6 O L] [} 10.8 10.9 2.7 3.7 15.2 29.7 [ 52.1 5.6 10.1 10000, 20000, 0, ~10000
SCALING TEST
40 55 0 7.0 10.6 8.4 3.3 1.2 0.9 4.8 21.7 B 13.7 7.1 4.6 6.3 200;100
10.6 10.0 0O 8.2 o 2.0 7.0 1.2 28 9.0 2.7 0 10.6 62.3 5.2 7.4 200;60
n.5 1.3 o 5.8 0 10.8 9.4 2.3 5.6 10.4 24.8 0 13.4 59.8 5.5 8.0 100; 100
15.8 18.8 0 0 E n 13.1 4.7 8.4 21.5 22.6 0 17.1 38.0 12.9 13.8 100: 60
] Ea 0’ m EE 43 7.5 @ @ 0 ) 29.9 1.6 13.5  100;50
LEGEND
Hd = Hardwood RFo = Red Fir Open Canopy
DFO = Douglas Fir Open Canopy RFC Red Fir Closed Canopy
POPO = Ponderosa Pine Open Canopy WF. White Fir Closed Canopy
HFO = White Fir Open Canopy DFC Douglas Fir Closed Canopy
Mead = Meadow POP Ponderosa Pine Closed Canopy
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Figure 1. SATURATED PIXELS.
MSS5/E2 unenhanced transform
channel showing the saturated
white and black pixels that oc~
casionally occur when Landsat
data is divided by the second
principal component. Saturated
pixels represent areas of unusu—
al contrast between Landsat bands.
Any saturated pixel falling into
a training site used for diver-
gence analysis would signifi-
cantly alter statistical means
rendering the technique unre-
liable.

This

Figure 2. — RAVE/E2.
transform represents the ra-
tio of the four Landsat band
averages divided by the second
principal compunent of the

four bands. It was the only
transform to gain information
content relative to Landsat
MSS4.

Figure 3. - EIGEN 1. The prin-
cipal component (Eigenvector 1)
of Landsat PCA highlights the
reflectance differences between
spectral channels due to wave-—
length, and therefore contains
only marginal vegetation in-
formation.

Figure 4. — EIGEN 2. Comparison
with the first eigenvector (Fig.
3) shows how the second eigen-—
vector from Landsat PCA displays
the subtle variations within
image features, with most inter—
band wavelength contrasts removed.
The combination of PCA data com-
pression with conventional ratio-
ing of Landsat bands produces a
potentially useful synergism.



