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ABSTRACT

Statistical texture measures are frequently
applied to texture analysis of remote sensing
imagery. In this paper two generalized classes of
statistical measures are introduced, which can be
used as texture measures and which include entropy
and angular second moment as special cases.

These generalized texture measures have interesting
properties, which are studied. Their relation with
actual texture in the (sub)image is considered.

The generalized texture measures are applied
for the classification of land use categories in
remote sensing images. Special attention is paid to
the classification by means of so-called texture
images. It is shown that by suitable substitutions
of the parameters into the generalized texture
measures alternatives can be obtained for the entro-
py, which are more attractive with respect to
implementation.

Finally, it is discussed how far statistical
texture measures can play a role for the assessment
of image quality of remote sensing imagery.

I. INTRODUCTION

It is well-known that texture analysis can be
applied fruitfully to the segmentation and classi-
fication of remote sensing imagery for example with
respect to land use or geological terrain types.
Contrary to other image features like tone and
colour, which are related to individual pixels,
texture is a local phenomenon, which is concerned
with more than one pixel in general.

There are several approaches for the extrac-—
tion of textural features from remote sensing
images. One of the common methods describes texture
by means of the gray level co-occurrence matrix.
This gray level co-occurrence matrix (GLCM) con-
sists of the relative frequencies of pairs of
pixels within a (sub)image or image block, which
are characterized by their mutual distance and
their gray level values. Generally distinction is
made between horizontal, vertical and (cross)-—
diagonal oriented pairs of pixels. There is a
close connection between the texture of the (sub)-

image and the structure of the GLCM's. The various
textural features of the (sub)image can be charac-
terized by applying so-called texture measures, of
which the values are related to the way in which
the elements of GLCM's are spread out over these
matrices. Besides the extraction of textural
features from a GLCM, they can also be derived from
gray level difference and sum histograms (GLDH and
GLSH, respectively), which express the distribu-
tions of the gray level differences and sums of the
pairs of pixeis and which are directly related to
GLCM. A survey of statistical texture measures for
GLCM as well as GLDH and GLSH are given by Haralick
et al.>s

In this paper two generalized classes of
texture measures will be introduced. These include
the entropy and angular second moment, which are
used as textural measures in literature, as special
cases. The introduced measures are closely related
to measures developed within information theory and
that part of statistics which is concerned with the
measurement of concentration and diversity. The
properties of these generalized measures will be
investigated. Special attention will be paid to the
influence of the extra parameters on their proper-
ties and on their relation to the actual textural
phenomena in the (sub)image.

In order to elucidate the usefulness of these
measures for the classification of remote sensing
imagery experiments were performed at NLR's RESEDA-
system (a system for the digital processing of
remote sensing data). This was done both for
classification of image blocks, which are each
assumed to belong to the same category, and for
the classification of remote sensing imagery by
means of so-called texture images.

Although texture measures are mostly applied
for the classification and segmentation of images,
it will be shown here that statistical texture
measures (including the ones developed here) can
also be used for the assessment of image quality
and as such are a useful tool for the evaluation
of imaging instruments and image processing tech-
niques. This will be illustrated on the basis of
an evaluation of the effect of a data compression
technique, presently being studied by NLR under
ESA-contract, on texture in remote sensing images.
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II. CONCENTRATION MEASURE

The statistical texture measures in literature
all characterize some properties concerning GLCM,
GLDH and GLSH. The contrast and inverse difference
moment measures express to which extent the ele-
ments of GLCM are scattered around the main-
diagonal.® As such they measure the amount of local
variations present in a (sub)image. Two other well-
known texture measures are entropy (ENT) and
angular second moment (ASM).® They characterize the
(un)evenness of distributions and can be applied to
the two-dimensional histogram of pairs of pixels as
well as to the histograms of gray level difference
and sum and are therefore measures for the (in)-
homogeneity of the (sub)image.

The measure ENT originates from the statis-
tical information theory and has been introduced by
Shannon as early as 1948.'% In the fifties ASM was
already being applied within statistics as a mea-—
sure of concentration in order to quantify the un-
evenness with which the features of elements of a
set are distributed over these elements. Shannon's
measure of entropy was used there as a measure of
diversity or evenness. However, within these dis-
ciplines other measures, which can be considered as
alternatives for ENT and ASM, have also been intro-
duced over the years. Recently, a unifying approach
has been given by the author with respect to both
information theory and that part of statistics,
which deals with the measurement of concentration
and diversity,l3’1*%

These generalized approaches are important not only
for the mentioned scientific fields, but they can
also give rise to generalized texture measures,
which still include the measures ENT and ASM as
special cases and which have interesting properties
and advantages in comparison with the latter onmes.
Firstly, the generalized concentration measure will
be introduced.

Assume n is the number of pixel pairs of an
image block, of which the texture is analysed.
These n pairs of pixels are divided into subsets
on the basis of features which are informative with
respect to texture, e.g. their individual gray
level values and their gray level differences or
sums. Let the number of subsets be equal to k. The
set N is given by N = (n,,...,n, ), whereby n.,
i=1,...,k is the number of pairs of pixéls
belonging to subset x.. Now, the concentration
measure, which can express one aspect of the
texture of the image block, should measure the un-
evenness with which the pairs of pixels are dis-
tributed over the k subsets. As a matter of fact,
the most elementary measure of concentration is a
function which is reversed proportional to the
number of subsets k. For, if k is large, then the
number of subsets is large and thus the concen-
tration is small. However, in this approach the
relative size of each subset is not taken into
account. For that very reason it is preferable to
base the concentration measure on the relative
frequencies of the subsets. The ASM measure, given

by K
£ = T g/,
i=1

is such a concentration measure. It can be inter-
preted as the probability that two randomly chosen
pairs of pixels of the image block belong to the
same subset. This measure can be generalized to

k o o
Gk(N) = Gk(n;n1,...,nk) = {121(ni/n) } s

where (p,0) € D and D is given by
D={(p,0)|[0<p<1,0<0Up>1,0>0}

With respect to the definition domain D it is
mentioned that D is such that Gk(N) satisfies con-
centration-like properties.

It is remarked that for p = 2 and 0 = 1 ASM is
obtained. Some other special cases of G (N) which
are important in the fields of statistics and in-
formation theory are now given below.

k
a. CONCENTRATION OF TYPE R, (R > 1): X (ni/n)R,
i=1

b. R-MEAN CONCENTRATION, (R > 0, R # 1):

K 1/ (R-1)
{ x (ni/n)R} ,

i=1
k R 1/R
c¢. R-NORM CONCENTRATION, (R > 1): { T (ni/n) } .
i=1

These measures have interesting properties with
respect to texture analysis as will be shown in the
following sections.

ITI. PROPERTIES OF THE CONCENTRATION MEASURE

In considering literature on texture analysis
it is noticed that less attention has been paid to
the algebraic and analytic properties of the
statistical texture measures (this also holds for
ASM and ENT), whereas these properties can clarify
which textural phenomena in the image block are
described by the various texture measures. In
general, the properties are only presented in terms
of distributions, whereby it is insufficiently rea-
lized that the distributions concerning GLCM, GLDH
or GLSH are consequences of the structure of the
image block. It can be proved for example, that
theoretically derived conditions for the extremes
of the texture measures can never be satisfied in
practice, due to the fact that for some given n
and k no corresponding image block can be construc-
ted. This should be noted by the interpretation of
values of texture measures in an absolute semnse.
The properties of G, (N) have been extensively
studied by the author.!®’'* However, only the most
important ones are summarized in this paper. First
we consider three algebraic properties of the con-
centration measure.

(1) G, (N) is invariant for a proportional change

of the subsets.
(i1) Gk(N) 1s a symmetric function of Dysenssny .

1983 Machine Processing of Remotely Sensed Data Symposium

161



(iii) Gk(N) is expansible.

It can be deduced from (i) that the concen-—
tration of an image block which is built up from
mutually equal textural areas is equal to the con-
centration of one separate textural area. This
implies that the concentration of an image block is
determined by the texture of the smallest textural
area, which still can be considered as an entity.
Property (ii) is a characteristic property of all
statistical texture measures. It holds that the
concentration measure is independent of the
sequence in which the pairs of pixels are con-
sidered. In fact this implies that other spatial
information than the one concerning pairs of pixels
is neglected. Property (iii) shows that empty sub-
sets do not contribute to the value of the concen-
tration measure.

Now, the maximum and minimum properties are
presented.

(iv) Gk(N) < Gk(n;n,O,...,O) = 1.

@ 6, = G (infl,...,n/k) = kTP,

Thus the maximum is achieved if all the pairs
of pixels of an image block belong to the same sub-
set. With respect to GLDH this implies that the
image block contains pairs of pixels, which all
have the same gray level difference.

It follows that the minimum is achieved if the
pairs of pixels are equally distributed over the
k subsets. This is only possible if n/k is an in-
teger. Considering the minimum as a function of k,
an image block with (k + 1) equal subsets will have
a smaller concentration than an image block with k
equal subsets. It may be concluded that the con-
centration measure not only depends on the uneven-
ness of the distribution of the subsets but also on
the number of subsets.

The smallest value is achieved for k = n and is

equal to n(1—p)c. With respect to GLDM this means
that all pairs of pixels of an image block belong
to different subsets.

However, if e.g. the number of pairs of
pixels is large in comparison with the number of
subsets, then generally pairs of pixels cannot
equally be divided over the subsets. In this case
the minimum value which the concentration measure
can achieve is larger than the one given above.
This is expressed in the following inequality.

(vi) For n = ak + B, where o and B are nonnegative
integers, it yields

8
Ry
Gk(N) 2 Gk(n;a,...,a,a+1,...,u+1)

i

{ (k-8) (a/n)°+ B{ (a+1)/n}"}°.

Thus this subminimum is achieved if the pairs of
pixels are distributed as equally as possible over
the subsets.

Finally, two ordering properties of the con-
centration measure are given. These give a better
insight into their relation with texture.

(vii) Gk(N) is a monotone function, or for m £ n:

Gz(m;m—3,1) < Gz(n;n—1,1).

(viii) In all cases of N, where for all i,
1

..okt n. = I n..
i

i=1,. i it can be derived

that j=1

. < .
le(n,n11,...,nk1) < Gk(n,n],...,nk).

The property of monotonicity states that the
concentration of an image block, where one subset
consists of one pixel pair whereas the other subset
includes the remaining ones, is smaller than the
concentration of an image block where the number of
pairs of pixels of the second subset is smaller.
This may be expected, since the unevenness between
the two subsets becomes less.

Property (viii) implies for GLDH, that the
concentration of gray level differences increases
if the number of gray levels is reduced e.g. in
order to add to statistical reliability. Moreover,
it follows that the values of the concentration
measure for GLDH or GLSH are always larger than the
corresponding ones for GLCM.

A systematical study of the algebraic, analy-
tic, and ordering properties can contribute to in-
sight in the relation between the concentration
measure and the textural phenomena in the image.
For more details we refer to Van der Lubbe. "

1V. INFLUENCE OF THE PARAMETERS

As a matter of fact the influence of the para-
meters is important in the view of practical appli~-
cations, where a choice of the values of the para-
meters p and o,(p,0) € D, should be made. The values
of p and o have a direct impact on the behaviour of
the concentration measure. For that very reason,
the concentration measure is studied here as a
function of its parameters and some considerations
are given concerning the choices of p and o.

The concentration measure G, (N) as function of
p and ¢ is decreasing in p and o for p > 1 and o >
0, and increasing on the remaining part of the de-
finition domain.

Considering the absolute minimum and maximum
of the concentration measure, it can be concluded
that, for given (p,0) € D, the range of values of
G, (N) depends on p and o.

The sensitivity for erroneously estimated distri-
butions depends directly on this range and thus on
p and o. For (p-1)o + 0 the range tends to zero.
The range is maximal for (p-1)o + «.

The values of the parameters also have a
direct impact on the discrimination between diffe-
rent textures. For example, let us assume that
there are two image blocks, one with pairs of
pixels which are equally distributed over k subsets
and the other with pairs of pixels which are
equally distributed over (k+1) subsets. It is stu-
died when there is maximal discrimination between
these two image blocks on the basis of the concen-
tration measure. It can be proved that the ASM
measure is most sensitive if the image blocks con-—
tain 2 and 3 subsets, respectively. The same holds
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for the R-MEAN CONCENTRATION measure. With respect
to the R-NORM CONCENTRATION measure for large
values of R, the maximal discrimination is achieved
for small k. For the small values of R the maximal
discrimination is obtained for images blocks with

a large number of subsets. Due to the fact that in
practice k is larger than 2 or 3, the R-NORM CON-
CENTRATION with a small value of R is more appro-
priate for the discrimination between this type of
textural image blocks than e.g. ASM.

Both the R-MEAN and R-NORM CONCENTRATION
measures have interesting limiting properties. Let
Dpgx be the number of pairs of pixels of the
largest subset, then

lim. Gk(N) =n x/n.
ov0,po~>1 ma

Thus the R-MFAN and R-NORM CONCENTRATION measures
tend to x/n for R > ». It also holds for pit0
that G (N) tends to n’. Together with the fact that
both the R-MEAN and R-NORM CONCENTRATION measures
are monotonic functions of R, this implies that for
the large values of R the R-MEAN and R-NORM CONCEN-
TRATION measures are mainly influenced by ., and
that for the small values of R the amount of con-
centration is rather determined by the relative
frequencies of the number of all the subsets.

The R-MEAN CONCENTRATION measure tends to np,./n as
its lower bound, whereas the R-NORM CONCENTRATION
measure tends to nmax/n as its upper bound.

Due to this properties and the fact that they in—
clude n__ /n as a special case, (which is also

used as a texture measure in literature), both the
R-MEAN and R-NORM CONCENTRATION measures are use-—
ful texture measures; by suitable substitutions of
the parameters different textural properties can

\ y
R=_01\ R=.9
4 R=.75
3}
2+
Ak
1 i 1 ! 1 | 1 1 1
0 12 3 4 5 6 7 8 9 10

Figure 1. The R-MEAN CONCENTRATION as function

of R.

be emphasized.

The behaviour of the R-MEAN and the R-NORM
CONCENTRATION measures is illustrated in Figures
1 and 2. It also follows from this figures that the
R-MEAN CONCENTRATION measure is rather insensitive
to changes in even distributions for small values
of R. The same holds for the R-NORM CONCENTRATION
measure.

The final choice of the parameter values is
determined by factors as the textures to be discri-
minated or the textural features to be extracted.

V. DIVERSITY MEASURES

The generalized concentration measure gave
rise to the ASM measure. It will be shown here that
ENT is closely related to generalized diversity
measures. Diversity measures can be defined ana-
logously to measures of concentration. It is a
matter of fact that if the diversity of an image
block is large then the concentration of this image
block is small. Conversely, a set of pairs of
pixels with a large concentration would have a
small diversity. For that very reason, a diversity
measure should be monotonically decreasing function
of the concentration measure. Furthermore, because
G, (N) is maximal (i.e. equal to 1) if the image
block consists of just one type of pixel pair, it
is reasonable to require for measures of diversity
that in this case they become equal to zero. These
starting points lead to the following definitions
of measures of diversity.

Let (p,0,8) € C, where C = {p,0,8[(p,0) €D
U 6 > 0} then the generalized diversity measures
are given by:1®>1%

Figure 2. The R-NORM CONCENTRATION as function

of R.
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1. Logarithmic diversity: ]Hk(N) —d.log[Gk(N)],

]

2. Linear diversity : sz(N) 6[1—Gk(N)],

3. Hyperbolic diversity : 3Hk(N) = G[I/Gk(N)—1].

It can be easily seen that they are non-—
negative and that they are equal to zero in the
case, where the image block represents just one
type of pixel palrs. Furthermore, it follows that
by using the minimum property of Gy (N) the diversi-
ty measures achieve their maximum if the elements
of an image block are distributed over the classes
as equally as possible. Due to the relation between
diversity and concentration the properties of the
diversity measures can be directly derived from the
properties of the measures of concentration. With
respect to the ordering properties diversity and
concentration have a reversed behaviour.

It can be concluded from an axiomatic charac-
terization theorem, that these diversity measures
are less arbitrary than they seem to be.!® The in-
troduced measures include the well-known informa-—
tion and diversity measures, and also ENT. A number
of diversities will be given here. They can be ob-
tained by using the definition of Gk(N) and by
suitable substitutions of p and o.

a. The DIVERSITY OF ORDER R (R >0, R# 1):1!

) = o o { 3 (ni/n)R}.

192513
b. The R-NORM DIVERSITY, (R >0, R# 1):

P - { [ I (n,/n) ]‘/R}/m—n.

i=1

It follows by taking the limit for R+1 that
both HE(N) and Hb(N) include Shannon's measure ENT
given by

k
HE(N) = —i§1(ni/n)10g(ni/n),

as a special case. It is an advantage of both the
DIVERSITY OF ORDER R and the R-NORM DIVERSITY that
they are decreasing in R. For increasing value of
R the influence of the largest subset increases,
until for R > « the measures only depend on n /n.

P . . max
This implies that by using these measures as
texture measures the choice of the parameter R
determines more or less the textural property,
which is measured.

Both the DIVERSITY OF ORDER R and the R-NORM

DIVERSITY measures are closely related to ENT,
not only as limiting case but also as expressed in
the following inequality which holds for R > 1

HE(N) z Hi(N) > HE(N).

For 0 < R < 1 the inequality signs are reversed.
The close relation between the DIVERSITY OF ORDER
R, the R-NORM DIVERSITY and ENT suggests that, for
small values of R they can be used as an alterna-
tive for ENT. The advantage is that this saves
processing time.

One way to investigate this is tracing how far

H (N) and H (N) are order preserving with respect
to ENT. Thls means if H (N ) and Hk(NZ) are the
amounts of diversity for two image blocks and if
HE(N ) z HI(N,), then it should hold that BN 2
H (N ).
for Hk(N) as well as for H (N) and for all

R € (R,,R)) where R€ [0,1) and R,E (1, ©], and

It can now be proved that this is the case

whereby R, and R, depend on the distributions of

N1 and N2. Tests“on remote sensing images have

shown that in 98 % of all cases Hi(N) and HE(N) are
order preserving with respect to B3(N), which
makes them attractive alternatives for the ENT
measure.

Results with respect to classification are
studied in section VII, where they are used in com-
bination with other textural measures including the
concentration measures.

VI. CONCENTRATION AND DIVERSITY CHANGE

In the foregoing sections measures of concen—
tration and diversity have been introduced. Thereby
the distribution of pairs of pixels for each image
block was assumed to be fixed. However, when con-
sidering correspondlng image blocks of multispec-
tral imagery this in general is not the case. For
that very reason, it is of interest to define
measures for concentration and diversity change.
This is also important for those applicationms,
where statistical measures are used for relative
image quality assessment of remote sensing imagery,
e.g. when one is interested in loss of texture due
to subJect1on of remotely sensed data to data com-
pression.

Analogously to Bruckmann an easy measure for
change in concentration can be given by

E = G (N))/G (N},
where G, (N.) is related to the reference image
(the original one by data compression) and G (N,)
is related to the image of which the texture loss

is analyzed.® With the change of minimal concen-
tration to maximal concentration, E becomes equal

to 1/Gk(N1).E becomes equal to k(l-p)O/Gk(N1) if
the concentration decreases to a minimum.
Thus E is bounded by

Lm0 o MY
If one requires normalization of E within bounds of
between -1 and +1, then one can choose
= (B-1)/E+1D).

It easily follows that E is increasing in E. More-
over it holds that

-a < E S a,

where a = (k(o-1)0-1)/(k(°—1)°+1).

1f Gk(N ) = Gy (N ), E is equal to 1 and thus E
takes on the value 0. The upper bound is achieved
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if the concentration changes from a minimum to a
maximum. For instance, with respect to GLCM this
would imply that an image block, which consists of
all different pairs of pixels, would change into an
image block, where all pixels have the same gray
level value. The converse holds for the lower
bound.

It is also possible to define measures for
diversity change. However, these measures will not
be considered here. For more details refer to
literature.

It will be shown in section VIII that the
measure of concentration change is suitable for
image quality assessment.

VII. STATISTICAL TEXTURE MEASURES BY CLASSIFICATION

With respect to the classification of remotely
sensed images on the basis of texture analysis two
approaches can be followed.

First classification can occur with image
blocks, which are considered a priori as uniform
regions and in which the pixels are assumed to
belong to the same category. Classification is now
based on the extraction of both spectral and
textural features from the separate image blocks.
This method has proved to be successful for land
use classification of image blocks derived from
Landsat-MSS images.®

Another approach, which takes more account of
the information content of the individual pixels,
is based on textural transformations. Around each
pixel of the image a pixel window of fixed
dimension is assumed. Within a window textural
measurements are performed and the corresponding
values are assigned to the centre pixel of the
window. By appropriate scaling so-called texture
images can be obtained for each textural feature,
which besides the spectral channels can be used as
input for the classifier. Good results were ob-—
tained by Hsu for monospectral aerial images where
the window consisted of (3 x 3) pixels.® Irons and
Petersen have performed experiments concerning
Landsat-MSS images, where windows were used with
sizes of (3 x 3) and (5 x 5) pixels.’® In both cases
texture measures were applied that differed from
the measures of Haralick or the here developed
generalized ones.

Experiments concerning both approaches were
carried out using NLR's RESEDA-system (for the
digital processing of remote sensing data) in order
to evaluate the classification results, by using
statistical texture measures, including the here
developed ones. With respect to the concentration
and diversity measures various substitutions for
the parameters were considered. With respect to
classification based on textural transforms texture
images were derived from Landsat—MSS images, band 7.
Since it is well-known that textural features re-
lated to GLDH perform as well as the ones based on
GLCM, experiments were performed only with the help
of GLDH. The original image was firstly histogram
equalized, whereby in orde: to guarantee sufficient
statistical reliability the number of gray levels
was reduced to 32. As a matter of fact the size of
the pixel window has also a direct impact on the

final classification results.

Large pixel windows may increase the statistical
reliability of the computed textural features.
However, a disadvantage of large pixel windows is
that especially in the case of relatively small
textural areas information of neighbouring regions
is also included.

For our main experiments a window of (5 x 5) pixels
was chosen. Furthermore, only pairs of pixels con-—
sisting of adjacent pixels were considered.

For each textural feature the results for a

window were averaged with respect to the four
directions, and this averaged value was assigned to
the centre pixel. By appropriate scaling texture
images were obtained.

From the texture images it could be derived
that other textural features could be extracted by
suitable substitutions of the parameters.

With respect to the R-NORM CONCENTRATION and
DIVERSITY, the R-MEAN CONCENTRATION and the DIVER-
SITY OF ORDER R, the influence of the most frequent
gray level difference within the window was clear
for the large values of R; for the small values of
R all gray level differences are taken equally into
account. These measures were all discriminative for
small as well as large values of R.

Evidently there is correlation between the
various concentration and diversity measures. For
example, the R-NORM CONCENTRATION and DIVERSITY
measures are equivalent, if used for a maximum
likelihood classification. This is due to the fact
that the R-NORM DIVERSITY measure can be considered
as a linear transformation of the R-NORM CONCEN=-
TRATION measure. Strong correlation also holds for
the R-NORM and R-MEAN CONCENTRATION measures with
large values of R, which is due to their limiting
properties. However, application of concentration
and diversity measures, used for both small and
large values of the parameters, is useful, since
different aspects of the textural phenomena within
the window are enlightened. The CONCENTRATION OF
TYPE R proved to be less successful for large
values of R.

For small values of R the texture images based
on the R-NORM DIVERSITY and the DIVERSITY OF ORDER
R were highly correlated with Shannon's entropy
measure. Due to the fact that textural transforms
themselves take a long processing time and ENT
is hardly computed because of the logarithmic
function, the R-NORM DIVERSITY and the DIVERSITY
OF ORDER R are attractive alternatives for ENT.

Classification was made using besides the
separate channels a combination of textural images
based on concentration or diversity measures (with
small and large parameter value) and measures such
as "inverse difference moment" and "difference
mean''; since the latter ones were more related to
the size of the differences than to the distri-
bution of the differences.

The relative enhancement of classification
results was most obvious when the texture images
were used in combination with a single channel than
with several spectral channels. Furthermore, super-
vised classification in regions which have distinct
texture led to comsistent labeling as compared
with supervised classification based only on
spectral informatioa. Where pixels of training
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areas with distinct texture were not classified
as members of the same category when only spectral
features were used, the results were considerable
better when textural features were extracted.
It also seemed possible to discriminate between
regions which had the same spectral signature.

However, some critical marginal notes should
be made with respect to the application of textu-
ral transformations for the classification of
images like Landsat-MSS images. For pixel windows
of (3 x 3) or (5 x 5) pixels the statistical
texture measures, including the ones introduced
by Haralick et al. act more as edge detectors than
as measures of texture. This holds particularly
for a measure as the difference mean, which mea-
sures the averaged gray level difference over a
window. This is especially inconvenient in image
parts which are characterized by small bounded
areas with different texture (compare the left side
of the Landsat-MSS image in Figure 3).
The edge effect appears in the classified image as
rejected or misclassified pixels between adjacent
classes. This can only be avoided at the cost of
discrimination. This coincides with the results of
Irons ans Petersen and seems inherent in the method
of textural transforms.®

The problem of the edge effect did not occur
in Landsat-MSS imagery with relatively large
texture regions. Classification results based on
spectral and texture images were considerably
better for aerial photography, as shown by the
experiments of Hsu, and for images e.g. from
Thematic Mapper with higher spatial resolution.®

Figure 3. Landsat-MSS image (band 7) of the
Harderwijk area, The Netherlands.

Finally, a few remarks are made with respect
to the classification of image blocks according to
the first approach. Experiments were carried out
for the classification of image blocks of Landsat-
MSS imagery, representing different land use cate-
gories, on the basis of spectral and textural in-
formation (GLDH). As might be expected the genera-
lized concentration and diversity measures could
be applied succesfully. By means of the choice of
the parameter values the textural aspects to be
emphasized by the concentration and diversity
measures could be slightly controled. It was also
established that the ENT measure could be replaced
by the DIVERSITY OF ORDER R and R-NORM DIVERSITY
measures, provided that the parameter R is small.
Since concentration and diversity measures applied
on GLDH, are more concerned with the distribution
of the gray level differences than with the
differences itselves, the best results were ob-
tained if they were combined with texture measures
as "inverse difference moment" and "difference
mean''.

With respect to both approaches generalized
concentration and diversity measures proved to be
successful. The final selection of the type of con-
centration and diversity measures to be applied to
the classification of remote sensing images, as
well as the choice of their parameter values de-—
pends on various factors like desired sensitivity
for subtle changes in even or uneven distributions,
the type of textures to be discriminated, the
textural features to be observed and the computa-

Figure 4. Landsat-MSS image (band 7) of the
Harderwijk area, The Netherlands. Compression
ratie: 9.0
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bility. Hereby study of their properties as in
the foregoing sections can assist.

VIII. STATISTICAL TEXTURE MEASURES AS IMAGE
QUALITY CRITERIA

Due to recent developments and possibilities
in the field of image generation and processing,
the interest for and the importance of the assess-—
ment of image quality increases. As a matter of
fact image quality can be determined with the help
of subjects, who pass (subjective) judgement on
the quality of images. However, since conditions
such as experience of the interpreter, type of
image, experimental conditions etc. play an im-
portant role with respect to the subjective image
quality judgement, it is in general difficult to
make conclusions concerning the effectiveness of
systems and methods generating the judged images.

Quantitative measures like signal-to-noise
ratio, mean squared error, are more objective and
reproducable and are commonly used for assessment
of image quality, but their drawback is that they
coincide badly with what the human visual system
considers as image quality. Furthermore, they give
a rather global impression of image quality.

In general the interpreter and user of remote
sensing imagery is interested in more detailed in-
formation with respect to the quality of remote
sensing images. For a remote sensing user the qua-—
lity of an image is also determined by aspects like
classification accuracy, edge-sharpness (e.g. in
view of cartographic applications) or texture-
coarseness (e.g. in view of agricultural or silvi-
cultural applications). For that very reason, it
is useful to develop criteria for image quality,
which are both quantitative and each emphasize
a distinct aspect of image quality. Pratt *°
has already suggested that texture measures can
perhaps be used for the assessment of that aspect
of image quality which can be described as texture.
Here, the statistical texture measures, including
the ones developed here and the measures for con-
centration change are used for this purpose.

Table 1. Concentration changes by data compression.
(compression ratios 5.5, 9.0; the measures are
based on changes of the R-MEAN CONCENTRATION)

water grass-lands agriculture
5.5 9.0 5.5 9.0 5.5 9.0

GLCM | 0.729 {0.790 -0.159 | -0.163 ~0.439 | -0.443
GLCM | 0.638 | 0.698 | -0.287 | -0.305 -0.500 { -0.500
GLDH | 0.408 | 0.454 -0.213 | -0.200 -0.227 | -0.221
GLDH | 0.320 [0.358 | -0.315}-0.307 -0.235 | -0.212
GLSH | 0.477 | 0.578 -0.124 | -0.092 -0.206 | -0.260
GLSH | 0.387 | 0.474 | -0.143 | -0.143 -0.208 | -0.261

Table 2. Textural features and data compression.
(compression ratios 0, 5.5, 9.0; COR = correlation
between neighbouring pixels; IDM = inverse differ—
ence moment; ENT = Shannon's entropy)

water

0 5.5 9
COR 0.11 0.38 0.49
1DM 0.456 0.874 0.893
ENT (GLCM) 4,202 2.131 1.460
ENT (GLDH) 2.114 1.026 0.843
ENT (GLSH) 2.820 1.830 1.294

grass—lands

0 5.5 9
COR 0.52 0.52 0.53
IDM 0.103 0.073 0.078
ENT (GLCM) 8.074 8.409 8.418
ENT (GLDH) 4.812 5.126 5.086
ENT (GLSH) 6.358 6.606 6.581

agriculture

0 5.5 9
COR 0.70 0.72 0.74
IDM 0.220 0.151 0.154
ENT (GLCM) 7.158 8.146 8.162
ENT (GLDH) 3.657 4.003 3.987
ENT (GLSH) 5.612 6.067 6.151

Dinstinction can be made between absolute and
relative image quality assessment. In the first
case the assessment concerns a single image, where-—
as in the second case a comparison is made between
a pair of images. It is evident, that especially
by the application of statistical texture measures
for absolute image quality assessment the properties
of the various measures should fully be taken into
account in order to well interpret the numerical
values of the texture measures.

With respect to textural transformation it was
necessary, depending on the size of the window, to
reduce the number of gray levels of the image
before calculating the textural properties. From
the view-point of image quality assessment this is
less preferable. For instance, in comparing an
image, which is distorted by data compression, with
the original image, gray level reduction would lead
to a considerable loss of information with respect
to the factual influence of data compression on
texture. Therefore, it is necessary to use a rela-
tively large window for the computation of textural
phenomena, in order to achieve sufficient statisti-
cal reliability. However, under influence of edges
and boundaries in the image, too large window sizes
can disturb the results. This holds especially true
for a texture measure like "contrast'. The "inverse
difference moment' can be used as an alternative
for this measure, since this measure expresses
local variations in pixel gray levels, whereby a
relatively large difference in gray levels contri-
butes least to the total amount.

In the following example various texture mea-
sures are used for the evaluation of the impact of
data compression on the image quality qua texture.
Data compression was carried out on the Landsat-MSS
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image of figure 3. The applied data compression
algorithm was based on one of the methods studied
by NLR under an ESA-contract concerning the design
and realization of an imaging sensor signal pro-
cessing system for use on board scientific satel-
lites. Following this method image blocks are
transformed with the help of the discrete cosine
transformation. The coefficients of the transformed
image blocks are represented in a number of bits,
according to a so-called bit map. In this example
the RMS error per image block was fixed. The over-—
all compression ratios were 5.5 and 9.0, whereby
the RMS errors were equal to 5.2 and 6.6, respec-
tively.

The reconstructed image for compression ratio
9.0 is given in figure 4.

Textural features now were computed within pixel
windows of (20 x 20) pixels for both the original
image and the (de)compressed image. In table 1 the
concentration changes are given for three land-use
categories: water, field agriculture, and
grass—lands.

It can be concluded from table 1 that the con-
centration with respect to the category water in-
creases for increasing compression ratio, the con-—
verse holds for the land use categories field agri-
culture and grass-lands. There concentration is
lower for the (de)compressed images in comparison
with the original image. In table 2 three other
textural features are given.

The inverse difference moment feature expresses
that for the categories field agriculture and
grass—lands the contrast first increases for in-
creasing compression ratio. After compression ratio
5.5 it decreases. Also now the behaviour of cate-
gory water is reversed. From the entropy it can be
concluded that with the exception of water the
entropies of the pixel pairs, gray level differ-
ences and sums are larger in the (de)compressed
image than in the original image.

Evidently, additional texture is generated in
the (de)compressed image, with the exception of the
water area. Texture measures can clarify the effect
of the data compression method on the various as—
pects of texture. Also curves can be obtained ana-
logously to rate distortion curves with respect to
the mean squared error. The relation between these
curves and the interpretability of the image is
studied.

IX. CONCLUSIONS

In this paper generalized concentration and
diversity measures were introduced which can be
applied to texture analysis of remotely sensed
imagery. The relation between their properties and
the textural phenomena in the image itself was in-
vestigated. At the same time, it clarified the
properties of known texture measures like angular
second moment and entropy. It has been shown that
the properties of the generalized concentration and
diversity measures can be changed by appropriate
substitutions of their parameters, whereby other
textural characteristics can be extracted.
Moreover, some special cases of these generalized
measures proved to be suitable alternatives for

Shannon's entropy measure, both in the sense of
computability, and of algebraic and analytic
properties.

The here developed texture measures were use-
ful for the classification of segments of remote
sensing images.

Experiments were also performed concerning
classification of Landsat-MSS images with the help
of textural transformations based on statistical
texture measures. It has been shown that this
technique is useful for the classification of Land-
sat-MSS images with the exception of images which
contain relatively small and bounded textural
regions. Good results with textural transformations
were obtained for imagery with high spatial reso-
lution, e.g. aerial photography and Thematic Mapper
imagery.

Finally, another application of statistical
textures measures, including the ones here intro-
duced was discussed. It has been shown that they
can play a role in the assessment of image quality
of remote sensing images and by the evaluation of
imaging systems and image processing techniques,
e.g. data compression techniques. This application
is currently being further studied under contract
for the Netherlands Agency for Aerospace Programs
(NIVR) .
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