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I. ABSTRACT

Important to the use of multitemporal
Landsat MSS data for earth resources moni-
toring, such as agricultural inventories,
is the ability to minimize the effects of
varying atmospheric and satellite viewing
conditions, while extracting physically
meaningful features from the data. In
general, the approaches to the preprocess-
ing problem have been derived from either
physical or statistical models. This paper
compares three proposed algorithms; XSTAR
haze correction, Color Normalization, and
Multiple Acquisition Mean Level Adjustment.
These techniques represent physical, sta-
tistical, and hybrid physical-statistical
models, respectively. The comparisons are
made in the context of three feature ex-
traction techniques; the Tasseled Cap, the
Cate Color Cube, and Normalized Difference.

I1. INTRODUCTION

The launch of Landsat 1 in 1972 pro-
vided the remote sensing community with a
source for multispectral, multitemporal
data and has enhanced our ability to moni-
tor the earth's resources. Multitemporal
data has especially enabled the tracking
of cyclical vegetative growth patterns and
crop conditions of the world's agricul-
tural lands.l The Large Area Crop Inven-
tory Experiment (LACIE, 1975-1977) demon-
strated accurate large area yield estimates
could be derived from Landsat data based
on analyst-driven pattern recognition
techniques and yield models. Recently,
the Agricultural and Resources Inventory
Surveys through Aerospace Remote Sensing
(AgRISTARS, 1980-present) program's Inven-
tory Technology Development project (ITD)
has aimed at reducing the cost/benefit
ratio of the data analysis and information
extraction process through increased auto-
mation. Many of the techniques proposed
for these projects preprocess the satel-
lite data in some way to minimize the

effects of extraneous conditions such as
sensor calibration, sun angle, viewing
angle, and atmospheric haze.

The preprocessing problem is formally
represented by the relation between the
reflectance, o, of a target and the radi-
ance, L, of that target as observed by a
satellite:

x
E(t)e H
T

L= +L
p

where E(t) is the sum of direct and diffuse
irradiance on the target, t is the optical
thickness of the atmosphere, u is the
cosine of the viewing angle relative to
nadir, and Lp is the path radiance due to

scattering in the atmosphere.3 The ap-
proaches to this problem generally fall
into one of two categories: those based
on physical models, and those based on

statistical models.

The XSTARY and ATCOR? haze correction
algorithms are representative of the phy-
sical approaches to preprocessing. Each
of these methods compute a haze diagnostic
from the satellite data and then use it in
simplified radiative transfer models.

Cluster matching algorithms, such as
CROP-A® and MLEST7, use statistical tech-
niques in computing a gain-offset trans-
formation that will match the signatures
in a recognition segment to those of a
training segment. Another variety of sta-
tistical preprocessing is represented by
the Mean Level Adjustment (MLA)8 and Color
Normalization (CN)9 algorithms. These
algorithms respectively compute additive
and multiplicative corrections based on
the scene mean.
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ITI. EXPERIMENTAL DESCRIPTION

Two experiments were performed with
the goal of comparing the effects of pre-
processing algorithms on derived features.
The first examines effects of preprocess-
ing on derived features. The second ex-
amines the effects of scene content on
preprocessing. For the purposes of these
experiments, three preprocessing algo-
rithms were chosen for analysis; XSTAR
haze correction®*, CN, and Multiple Acqui-
sition Mean Level Adjustment (MAMLA).10
XSTAR and CN represent physical and sta-
tistical techniques, whereas MAMLA is a
hybrid technique that combines features
found in both XSTAR and CN. The effects
of each algorithm were observed in the
context of three representative feature
extraction techniques: the Tasseled Cap

Transformation the Cate Invariant Color
Transformationl and Normalized Differ-
ence.13

A. DESCRIPTION OF THE ALGORITHMS

Mathematical descriptions of the pre-
processing and feature extraction tech-
niques are presented in addenda. A sum-
mary of the intuition behind each tech-
nique follows.

Preprocessing Algorithms. XSTAR -
The XSTAR haze correction algorithm is an
outgrowth of a simplified version of the
ERIM Radiative Transfer Model.l4 The
algorithm is unique in that it derives a
haze diagnostic from the satellite data
itself and then uses it as a parameter in
an atmospheric model. The Yellowness fea-
ture of the Tasseled Cap space is used as
this haze diagnostic from which a measure
of relative optical thickness is computed.
The algorithm also includes a cosine cor-
rection for sun angle and a gain-offset
correction for sensor calibration.

There are two implementations of the
XSTAR algorithm. Global XSTAR computes a
mean haze diagnostic for an entire scene,
whereas Spatially Varying XSTAR computes
diagnostics for each non-overlapping 5x5
pixel region, and then smoothes them with
a Gaussian filter.l In theory, Spatially
Varying XSTAR should provide better results
when the haze level is not uniform over
the entire scene.

Color Normalization - Many of the
extraneous effects that one attempts to
remove with a preprocessing scheme have
been observed to be multiplicative in
nature. Hence, simply dividing a group

*The sun angle and satellite correction in
the XSTAR algorithm was also analyzed in-
dependently, but due to its similarity to
MAMLA, it is not discussed in this paper.

of pixels by their mean should minimize
these effects. This technique has been
observed to produce desirable results
under certain conditions.

Multiple Acquisition Mean Level Ad-
justment - This algorithm attempts to com-
bine the intuitive simplicity of the CN
algorithm with the sun angle correction
and satellite calibration features of the
XSTAR approach. The scene means for each
acquisition of a segment are adjusted for
sun angle and sensor and then combined to
form a segment mean. The segment mean is
then inversely corrected for sun angle and
sensor for each acquisition. The pixel
values are subsequently divided by the
acquisition specific segment mean.

Feature Extraction. The Tasseled
Cap - The Tasseled Cap Transform is an
affine transformation that captures the
majority of agricultural information in
two features known as Greenness and Bright-
ness. Greenness is interpreted to corre-
spond to crop growth and development,
whereas Brightness is perceived to corre-
spond to soil color and albedo. A third
feature, Yellowness, is used as a haze
diagnostic in the XSTAR algorithm. The
remaining feature, Nonesuch, is often dis-
carded since it has not been found to con-
tain agriculturally useful information.

The Cate Color Cube - The Cate Invar-
iant Color Transform is a non-linear trans-
formation based on a modified cylindrical
coordinate system. The extracted features,
termed Hue, Value, and Chroma, are inter-
preted as relating to the color character-
istics of imagery produced by a film gen-
erator using MSS Bands 4, 5 and 7.

Normalized Difference - Normalized
Difference is interpreted to be a measure
of crop development. Similar to the Hue
feature of the Cate Color Cube, Normalized
Difference is non-linear and describes an
angular displacement of data in the two
space of MSS Bands 7 and 5.

B. DESCRIPTION OF THE DATA AND PROCESSING

In the first experiment, data col-
lected on 14 passes of Landsats 2 and 3
over Montgomery Co., Indiana (Segment 127)
during the 1978 growing season was pro-
cessed under each of the three preprocess-
ing schemes. The resulting data was then
used as input to each of the three feature
extraction techniques. Ground truth infor-
mation was then used to stratify the data
by crop type and temporal profiles of corn,
soybean, and trees were produced for each
of the resulting features.

"The spatially varying implementation of

XSTAR was used.
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Segment 127/78 was chosen because
several agricultural situations are repre-
sented (all soil, all vegetation, and
mixed soil and vegetation). Additionally,
most dates are very clear, with the excep-
tion of Day 197 which shows indications of
spatially varying haze.

The second experiment was designed to
test the stability with respect to scene
content of the preprocessing algorithms.
This was done by extracting mean profiles
for corn, soy, and trees from the four MSS
bands of Segment 127/78 (described above) .
Five hypothetical scenes containing vary-
ing amounts of each crop were then pro-
cessed under each technique. The propor-
tions used are displayed in the following
chart:

Scene % Corn % Soy % Trees
1 63 32 5
2 80 10 10
3 10 80 10
4 10 10 80
5 33.3 33.3 33.3

IV. RESULTS

A. THE EFFECT OF PREPROCESSING IN MSS
SPACE

Figure 1 shows composite scatterplots
of Band 7 vs. Band 5 for all 14 acquisi-
tions of the resulting data. In Figure la
the data along the diagonal primarily cor-

" respond to bare soil whereas the data
along Band 7 for which Band 5 values are
high represent various stages of vegeta-
tive development. High values along Band
7 for which Band 5 values are also high
are haze affected pixels of Acquisition
197. Figures 1b, lc, and 1d show the
same data after processing by the XSTAR,
CN, and MAMLA algorithms, respectively.
Note that XSTAR and MAMLA maintain the
general shape of the data while it is com-
pressed to compensate for sun angles that
ranged from 210 to 59°. 1In addition,
XSTAR has moved those pixels attributed
to haze closer to the bulk of the un-
affected data. CN behaved differently by
compressing the data towards a central
point and significantly changing its
general shape.

The different behavior of CN can be
understood by considering the example pre-
sented in Figure 2. In this figure the
envelopes of three hypothetical acquisi-
tions in various agricultural situations

L N . . .
Due to the loss of spatial information,
global XSTAR was applied to each crop
stratum.

(all soil, all vegetation, mixed soil and
vegetation) are shown before and after CN.
One can see that even though these means
represent three distinct points in raw
data space, they are superimposed in the
CN preprocessed space. This is due to the
fact that CN considers each acquisition
out of context from a physical model or
the other acquisitions. MAMLA does not
perform this way because it considers each
acquisition in context of the others and
XSTAR does not perform this way because

it works within the context of a physical
model.

B. THE EFFECTS OF PREPROCESSING IN
FEATURE SPACE

The most important effect preprocess-
ing has on the features is the change of
interpretation that must accompany CN.
This may be most easily observed by exami-
ning Normalized Difference profiles of
trees (Figure 3). The different profiles
produced by CN make sense when one rea-
lizes that they should be interpreted as
a measure of relative crop development
rather than absolute measures. Trees
start off greener than corn and soybeans,
but as corn and soybeans develop, even
though the absolute greenness of trees
does not change significantly, its rela-
tive greenness drops with respect to corn
and soybeans. Hence CN produces an ap-
parently inverted profile. This effect,
when combined with the non-linearity of
the Hue feature produces separation be-
tween corn and soybeans that is not avail-
able with the other preprocessing methods.

In general, XSTAR and MAMLA produce
smoother versions of the raw data profiles
without significantly changing their gen-
eral shape. This is most evident with the
Greenness profiles of corn (Figure 4). An
exception is the spike that MAMLA intro-
duces in the Hue profiles of corn and soy-
beans (Figure 5).

The effect of sun angle is most
clearly seen in the Brightness feature
(Figure 6). CN appears to correct for
this fairly well, whereas XSTAR and MAMLA
appear to be less effective with the ex-
tremely low sun angles at the end of the
season. This may be due to the inadequacy
of the Lambertian assumption at low sun
angles.

C. THE EFFECT OF SCENE CONTENT ON PRE-
PROCESSED FEATURES

Figure 7 shows the sensitivity en-
velopes of Normalized Difference, Bright-
ness, and Hue. Large envelopes are un-
desirable since the crop profiles are
constant regardless of scene content.
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The XSTAR profiles are unchanged by scene
content. However, XSTAR, by using Yellow-
ness as a haze diagnostic, will be sensi-
tive to any change in Yellowness due to
scene content. This is not expected in
vegetative applications but is in others.
CN shows a significant amount of sensi-
tivity to scene content in all features.
This is particularly true at the height

of the growing season. MAMLA reduces this
problem significantly but still shows a
small degree of sensitivity. It should
be noted that only the proportions of
three crops were changed. If other crops
were introduced, one would expect to see a
wider degree of variation in the profiles.

V. CONCLUSIONS

Preprocessing techniques, such as
XSTAR, that are based on physical models
have the desirable feature of a high de-
gree of stability. This stability is only
as good as the independence of the haze
diagnostic from agriculturally relevant
information (which appears to be a reason-
able assumption) and the validity of the
model employed. Statistical models, such
as CN will show a degree of sensitivity
to scene content due to their dependence
on data dispersion. However, in cases
when a certain amount of information is
known about a particular scene, the rela-
tional aspect of the features may be de-
sirable. Statistical techniques that use
larger sample spaces and orient themselves
within a physical model, such as MAMLA,
appear to show promise in reducing the
amount of content sensitivity while main-
taining the intuitional simplicity of
purely statistical techniques.
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ADDENDUM~MATHEMATICAL DESCRIPTIONS OF THE
PREPROCESSING ALGORITHMS

1. The XSTAR Haze Correction Algorithm

a) Satellite calibration and sun angle
correction

cosbd
X, = O.{a, -L.,+B, ] , where
i cosb i,s 7i i,s
6 = 39°

is the Landsat pixel value for the
ith channel

s is the satellite number

A is a matrix of gain calibrations for
B

o
6 is the sun azimuth
i

each channel of each satellite
is a matrix of offset calibrations
for each channel of each satellite.

b) Computation of relative optical
thickness

- 2 xE)v = _x¥) v
a = iilui(xi xf)yi , b iilai(xi Xi)yi ,
¢ = I (x;55)-y%

i=1
1
R R L R
b° b

where

x* is an empirically defined point
= of all haze
y is the direction of the Yellow-
ness axis
y* is an empirically defined normal
haze condition
v is a measure of relative optical
thickness

¢) Computation of the haze corrected
pixel value

L= e"Vx+(1-e*Y)x*
where:
1.'is the corrected Landsat vector

o represents the relative aerosol
optical thickness for each of the
four wavelengths

2. Mean Level Adjustment

L.
L) = =&
Ly
where:
L; is the Landsat pixel value for
the ith channel

th chan-

T.. is the mean signal in the i
nel for the acquisition
L) is the corrected Landsat pixel

value for the ith channel

3. Multiple Acquisition Mean Level Adjust-
ment

a) Calculate the channel means for each
acquisition
Ei' is the it! channel mean for the
J jth acquisition.

b) Perform Satellite Calibration and
Sun Angle Corrections on the Acquisition
Means

coss B
X,. = —-[A, -L,.+B. ]
ij cosej 1,sj

where:

is 39°

is the sun azimuth angle for the

jth acquisition

s. is the satellite number for the

J 5th acquisition

A is a matrix of gain calibrations
for each channel of each satellite

B is a matrix of offset calibrations
for each channel of each satellite

oo OCD

Note the similarity between this step and
Step a) of the XSTAR algorithm.

¢) Calculate the segment mean

X. = X

N
n,_q 13
where: n is the number of acquisitions.

d) Calculate the acquisition specific
segment means

cosf
'
cosf .Xi,Bi,s.
XV, = o _J
ij A,
i,s.
- J

Note that this is inverse sun angle cor-
rection satellite calibration.

e) Perform mean level adjustment with
respect to the acquisition specific seg-
ment means

L.
Lij = 7
where: 1.. th

is a pixel value grom the 1
channel of the jt! acquisition
1ij is the corrected pixel value.
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ADDENDUM- -MATHEMATICAL DESCRIPTION OF THE
FEATURE EXTRACTION TECHNIQUES

1. Tasseled Cap Transformation
t = TL

where: is a Landsat pixel vector

L

T is an orthogonal matrix with rows
corresponding to Brightness,

_  Greenness, Yellowness & Nonesuch

t is the Tasseled Cap pixel vector

2. Cate Color Cube

_ c
¢ =CILL , Hue = Tan'l(Eg

Chroma = c1+c2

1
_— ,
/3 3

(a) Raw Data (b) XSTAR

where: L is a Landsat pixel vector

is an orthogonal matrix

0l o

is the rotated pixel vector.

5. Normalized Difference
O

L4 + L2

where: I is a Landsat pixel vector
N is the normalized difference.

Note: This work was sponsored under Con-
tract NAS9-16538 by the U.S. National
Aeronautics and Space Administration,
NASA Johnson Space Center, Houston,

Texas 77058.

(c) CN (d) MAMLA

Figure 1. The Effect of Preprocessing in
MSS Space. Segment 127 (1978) All Acquisitions.

MSS7 1 MSS7

CN

>

MSS5

\/.

AN
4

1 MSS5

Figure 2. Hypothetical Application of CN
on Three Acquisitions in Varying Stages of Vege-

tative Development.
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Figure 3. The Effects of Preprocessing on
the Normalized Difference Profiles of Trees.
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Figure 4. The Effects of Preprocessing on
the Greenness Profiles of Corn.
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Figure 5. ' The Effects of Preprocessing on the
Hue Profiles of Corn and Soybean.
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Figure 6. The Effects of Preprocessing on
the Brightness Profiles of Trees.
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Figure 7. Sensitivity Envelopes of Normalized
Difference, Brightness, and Hue.
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