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I. ABSTRACT

The objective of the research reported in

this paper is to present the implementation and
results of an adaptive image segmentation proced-

ure based on Kalman filter approach. The pr
mitive operators used for the segmentation are
texture measures. The procedure and the techn
que for incorporating contextural ‘information
segmentation are tested on a Black and White
(B&W) digital image.

II. INTRODUCTION
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Image segmentation is recognized as an im-

portant task in an image understanding system.
Identification and proper labeling of regions
the scene, which correspond
perceptual interpretation is the primary ob-
jective of the segmentation procedure. The pr
itive operators used in procedure developed ar
texture measures derived from cooccurrence mat
rices. In particular, the spatial gray level
dependance method (SGLDM) is utilized because
theoretical studies have shown them to be supe
ior and experimental studies on real world
images including medical imagery and high reso
ution aircraft and satellite imagery have indi
cated their utility in characterizing complex
scenes.
matches a level of human perception process.

An effective image segmentation methodolo
requires ability to incorporate contextual inf
mation in the processing of a scene element.
procedure developed in this research has the
following attributes:

i) The method employs a split-and-merge type
of approach.

ii) The procedure incorporates a multicategory
Baysian classifier to label scene elements

in

closely to the human

im-
e

r—
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Also, it has been shown that the SGLDM
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iii)

iv)

The procedure utilizes Kalman filter
approach to realize a relaxation scheme which
enables incorporation of the contextual in-
formation. Such an approach provides a sta-
tistical decision making strategy and effec-
tive termination criteria to indicate whether
or not further processing at a higher level
of segmentation is required for a scene ele-
ment. Since Kalman filter provides a glo-
bally optimum solution, such an approach
seems attractive.

The filtering approach treats two sets of in-
formation at a particular level: The class-
conditional probabilities of scene elements,
which can be termed as an intrinsic descrip-
tor of the scene element and the joint-condi-
tional probabilities, which can be termed as
an extrinsic descriptor for a scene element
since it depends on the neighborhood, con-
textual, information. These probabilities
are assumed as independent random variables.
Given the extrinsic description of a scene
element the intrinsic descriptor can be es-
timated for each scene element, such that the
estimation error is minimized. Kalman fil-
ter, therefore, seems like most appropriate
method for the stochastic, context-based de-
cision making.

The last attribute of the segmentation is
that the above implementation is completely
adaptive, for general purpose applicability.

ITI. KALMAN FILTER APPROACH

MATHEMATICAL MODEL

The intrinsic information about the image

elements can be derived by using a classifica-
tion algorithm. For this study a multicategory
classifier was used [1]. The external informa-
tion is based on relational information between
the elements of an image and the neighbors of

which do not require any further processing ™

[ 1].

*#This work is supported in part by U.S. Army
Grant {#DAAG23-82-K-0189.

them.

This can be expressed as conditional prob-

abilities of the image elements given the neigh-

bors of them.

The external information may be

what is derived from the visual process of skill-
ed human observer or what is calculated over the
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entire image under consideration. One such ex-
ample of the former is well described in ref. 2
and of the latter will be described in this paper
using the global statistics of the image which is
useful for improving the local description in the
later stage.

We have two probabilities of each element,
both of which are corrupted by the noise. Since
these probabilities can be treated as a random
variable, the remaining problem is how to get an
estimate which combines both probabilities such
that the cost of the estimation will be minimal
in a statistical sense. To solve this problem,
we will use Kalman filtering. We will regard the
intrinsic probabilities of image elements as mea-
sured quantities, while those calculated from the
external information as quantities calculated
through assumed stochastic processes among image
elements.

It is assumed that the probability random
process is adequately described by the state var-
iable dynamic model.

p.(w,) == £ [P, .G |W)P, ()+u, . (v |w)]
. je0, (wy Jwend ik J 1K
q; () = Po(w) + v, W)

i is an index for an image element and is nor-
mally two dimensional coordinates, but it can be
a node in a semantic graph; 0,(w,) is a collec-
tion of sets of neighbors which have relations
with the element, i, when i has a class label
w, , j is an element of 0,(w,) and has m-1 ele-
ments if m'th order statistlcs is assumed; Q
is a collection of sets of class labels; w is an
element of {2, each element of which corresponds
to the class label of the element of j. The ran-
dom process, P, (w,) is the probability with known
statistics that i has a class label w ;
Pi.(w |w) is the conditional probability that i
beiongs to class w, , given a set of neighbors,
j, which has a set of class label w; P, (w) is the
joint probability with known statistic% that the
set j has a set of class label w; q.(w,) is the
measured quantity of P.(w, ). The noise random
process, ui.(w lw) explains the inadequacy of
the model ot the external information and the
noise process, Vi(wk) interprets the noisy
component in the intrimsic information. Both
noise processes are white noise processes with
known statistics. The random processes, Pi(w ),
P, (w), u..(wk|w), and v, (w,) are statistically
iﬂdependéﬂt. It is also assumed P,., P.., and
P.(w) are spatially invariant. In fees® j in
P, (w Iw) is used for spatial relationship in
tﬁ% ngighborhood but P. . (w lw) is the same over
s (W
the image. It is wortﬁjnoting that the equation
can be expressed with the matrix if we regard k
as a row index and an index of lexicographical
ordering of w as a column index. In the real
situation, it is difficult to measure P.(w) and
its statistics. In addition to this reason,
for notational simplicity, we will only comsider

the case of second order statistics. Extension
of this result to the general case is straigh-
forward. With the notations,

p, = [P (W) ..Pi(wL)]T

1

= T
uij = [uij(wl) ....uij(wL)]
q; = [qi(wl) ....qi(wL)]T
v, = v ) ey, )T
Pyy = [py G w1,
we have
P, = I [P..P, + u..]
jEOi(wk) 1] ] 13
9 - Pi + Vi

P., Qs Ugss Vo are L-dimensional vectors, among
which'P, 2nd q. are stochastic vectors; the sum
of their components are equal to one. These vec-
tors are mutually orthogonal in terms of inner
product defined by

(y,z) = E[yTZJ

with known statistics. Particularly, the covar-
iance matrices of the two white noise processes
are

@500 = Uy

(Vi,vi) = Ri'

Pi' is a L x L matrix whose (k,1l) element is re-
pr%sented by Pij(wklw).

LINEAR ESTIMATION

Given the preceding model, we can now deter-
mine an estimate P, for P_,, Which is a linear
combination of P,'S and q>. In the following,
we will treat thé intrinsic probability in two
different ways; if it is with the image element
under consideration, it will be regarded as the
measured quantity, q. and if it is with a neigh-
bor of this element, it will be regarded as the
estimate available from the former processing,
P,. The estimate should be optimal in the sense
that the expected value of the sum of the squares
of the errors in the estimate is a minimum. The
objective function is naturally defined as

JIB,1 = B[, - 1>i)T(13i - 21

Our goal is to express P, as a linear combination
of B, 5
J
P, = I PP +K[q - I P P]
i . ij"j it ij 3"
3€0, Gn) jeo, () I

The unknown matrix Ki is L x L and is called the
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Kalman gain matrix. For notational simplicity, we
use the trace of the error covariance matrix, Ci,
instead of J[Pi].

J(B,] = trace[C,] = traceE[(B; - P;) (P, BN

The above has its minimum
1 ] 1 1 __1
= - = + R,
c; =G KiCi,when Ki Ci(ci 1)

where
\i

. . T T
Ci = z [Pi - Pi)(P - Pi) Pij - Qij].
jeOi(wk)

We have not yet considered the constraint
that Pi should be a stochastic vector, that is

L
) Pi =1, and O E~Pi'
k=1
The first constraint requires that the solution
vector lie on the coset of the subspace,
L o ~
$ P, = 0 of the solution space of Pi' We de-
k=1
fine the linear transformation, A, from the sol-
ution space to the subspace. Then, the projec-

tion T, of Pi into the coset is expressed as
i

TiPi = AiPi + a,
where a is L-dimensional vector, every element of
which is I

It can be shown [1] that if Pi has some neg-
ative components, by setting those components
equal to 0 and subtracting these total increases
divided by the number of the rest components
from each of the rest components, we can get
the minimum C,. The above mentioned operation
may be expresSed by the diagonal matrix with O in
the places corresponding to the negative com-
ponents and the ratios of the new values to the
old in the places corresponding to the rest ones.
Let B, represent such an transformationm, then
the final estimate and its error covariance be-
comes

= 2P,..P, +K,[q, - I P, P,
Pi BiTi iji’j 1[q je0 ) ij i
jeOi(wk) itk
! vy, T T
= - .B.B..
Cy = (€5 = KyCpA 48,

TERMINATING CONDITION

Basically, our Kalman filter performs the
estimation by processing the intrinsic and the
external information just once. However, to
the updated intrinsic information which hope—
fully contain less noisy components than the
original, we may apply the filter iteratively to
get the better estimate. But this iterative in-
formation can be modeled by m'th order statis-
tics since from the second processing, we are
using neighbors which have been estimated with
the elements beyond the proposed neighbors.

A possible justification for the iterative pro-
cessing is based on the fact that our external
information is not complete. Especially, when we
use global statistics over the image as external
information, it is probable that we can get im-—
proved external information with the updated data.
If we have a complete external description from the
beginning, the process should be performed just
once. Hence, it seems to be natural to terminate
the processing when the possible error covariance
with the perfect external information is achieved.
In this case, u,.(w ]w) = 0 and as a bound for the
error covariance matrix, we have
' 1

D, = (D, - K.D,)A'A B BT

i i A A A . A
where

A}

D, = z

A ~ T.T
1 pP..(P, - Pi)(Pi— Pi) Pij

T ijoi
JEOj(wk)

We can also use the confidence level as a termin-
ating criterion. If the error variance of the
largest component of the stochastic vector is o
and that of the second is 0%, we may use some
constantmultiple of (01+ G } as the criterion to
guarantee the desired confidence level. 1In the
experiment, we have used both criteria. The
process terminates whenever

diag[Ci - lei] < 0 and cii " cjj 3_k2(ol + 02),

where k, and k., are some constants which are de-
termine% consiéering the tradeoffs between the
computational effort and the desired accuracy of
the classification, and c¢,, and c,, are the
variance of the first and the secddd largest com-—
ponents of the stochastic vector.

IV. IMPLEMENTATION OF THE KALMAN FILTER

With the estimated probabilities of image
elements as the intrinsic information, we imple-
mented the Kalman filtering on the digital com-
puter to apply it to the real world imagery. Our
image elements were produced by a set of equally
spaced grids over the image. From the training
stage, we collected the statistics of the intrin-
sic of vy

Since we feel that the classes of the image
elements can be divided into the two major cate-
gories, enlongated and large homogeneous areas,
we used different approaches for each category.

For the elongated area, we assume general
N'th order statistics since we are inter-
ested in determining the location of the ele-
ment which will fill a broken part of the area.
For the large homogeneous area, on the other hand,
we assume the second order statistics between the
center element and the eight nearest neighbors
under the stochastic vector assumption. The
image elements determined as belonging to elong-
ated areas are not considered any more in pro-
cessing the large homogeneous area. The
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treatment of elongated areas are not presented
here for the sake of brevity. Interested reader
is referred to reference 1 for details. We use
only the statistics of the training stage and the
apriori knowledge, what category each class be-
longs. Both are normally available in a super-—
vised learning. Other information is collected
adaptively from the whole image.

Large homogeneous areas are dealt with as
an estimation problem. To solve this problem, we
need methods to calculate the conditional prob-
ability, P,., and the error covariance of u...
An externaijinformation characterizing thile
category may contain the convexity-and the size
of the area. A part of this information seems
to be reflected in the average number of neigh-—
bors which have the same class label as that of
the center image element in a fixed size neigh-
borhood.

For each image element, we count the elements
in its neighborhood which have the same class
label as that of the element under consideration.
Then, these counted numbers are averaged for each
large homogeneous class over the whole image.

The inverse of the closest integer to the aver-
age is used as the elements of Pij'

Pij = dlag[Pll""’PLL]

Pii: l/Ni
Ni: average number of elements in the neigh-
borhood of the elements with class label i.

Note that we are using a diagonal matrix, Pi' to
reduce the calculation; the external informa%ion
between the elements with different class labels
is not considered. To get more reliable condi-
tional densities, we may use only the elements,
which has relatively higher class conditional
probability, as the center element. With these
conditional probabilities and the class condi~
tional probabilities of the neighbors, we esti-
mate the class conditional probability of the
center element. Then, we calculate the error
covariance of this estimate over the whole image.
Note that we are not considering the noise pro-
cesses and this estimate is not based on the
Kalman filtering. This process is just for
obtaining the statistics of uij'

T

Qy = E[(P, - Pijl’j)(Pi - Piij) ]

With Pi‘ and the covariance of u;., we
apply the Kalman filter to each image dlement.
To ensure the stochastic vector assumption, we
use N, neighbors for the class, w.. These
neighbors are selected to be evenly distributed
around the center element and to have the high-
est class conditional probabilities among those
evenly distributed sets of neighbors. Note that
each class need not have the same number of
neighbors. This approach keeps the small area,
composed of the elements from the class whose

area size is normally small, from disappearing on
the .image, while regarding the small area of the
relatively large-size class as a noise. With

this approach, the element in the interior of the
large homogeneous area will tend to have a high
class conditional probabilities; the class con-
ditional probabilities of the element of the
boundary will be changed to those which agrees
more with the external information based on the
statistics of the shapes of the competing classes.
After the Kalman filtering, we project the P, on
the hyperplane defined by the stochastic vector
assumption. The whole processes are iterated until
the terminal condition is met.

V. EXPERIMENTAL RESULTS

Experiments have been performed on a B&W
aerial image [ 3). Training samples were taken
from the same image of estimate the parameters of
the multicategory classifier and to collect the

statistics of the noise random process v.. The
same statistics was used as the initial statistics
for the probability random process P,. We divided

the image into 34 x 34 polygons, the width and
the height of which are 145 pixel spacing, each.
With these parameters and statistics, the class
conditional probabilities of each polygon were
estimated. Kalman filter was applied to the
class conditional probabilities of each polygon.

The dimension of the original observation
space is 198. The construction of the observa-
tion space based on texture measures is explained
in the reference [ 3]. Training results of the
multicategory classifier are given in Table 1.
Table 1. Training results derived using the
multicategory classifier.

Class# Class Name No. of Samples Classifi-
cation Ac-
curacy (%)

1 Residential Area 83 77.1
2 Commercial Area 328 85.7
3 Mobil Home 41 95.1
4 Vehicle Parking 25 68.0
5 Dry Land 353 94.6
6 Water 85 98.8
7 Runway 78 87.2
8 Aircraft Parking 21 85.7
9 Highway 124 91.9
Total 1138 89.5

89.5 percent of samples are correctly classified,
whereas the results by the pairwise linear dis-
criminant function [3] shows 90.3 percent of
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correct classification.

Before applying the Kalman filter, we deleted
the classes 4 and 8 and included them into class
2 and 7, respectively, since these classes con-
tain too few training samples. It seems to be
reasonable that vehicle parking is contained in
commercial area and airplane parking is contained
in airport. The new assignment of classes is pre-
sented in Table 2.

filter be applied only to those classes with the
meaningful number of samples to acquire the
statistics from. Improvement of contextual infor-
mation is reflected by the decreasing error co-
variance as the filtering process progresses.

For the analysis we used the verified
classes (ground truth) as of the polygons in the
reference [ 2 ]. These classes, however, do not
reflect any contextual information. Our segmen-

Table 2. Classification results acquired with the multicategory
classifier and by applying four iterations of Kalman
filter.
Classification (%)
Class Class No. of Correct Incorrect No label
No. Name Samples Initial|After Initial|After Initiall|After
Filtering Filtering Filtering
1 Mixed 136 63.2 85.3 36.8 14.7 0 0
2 Residential 50 50.0 48.0 50.0 28.0 0 24.0
Area
3 Commercial 364 61.0 72.3 39.0 13.5 0 14.3
Area
4 Mobil Home 9 88.9 b4 .4 11.1 0.0 0 55.6
5 Dryland 325 85.8 70.5 14.2 17.2 0 12.3
6 Water 104 84.6 88.5 15.4 6.7 0 4.8
7 Airport 81 84.0 93.8 16.0 0.0 0 6.2
8 Highway 87 80.0 87.4 19.5 4.6 0 8.0
Total 1156 73.2 76.1 26.8 13.0 0 10.9

To begin the processing the Kalman filter
was applied to class 8, the highway class which is
the only elongated area in the image. 75 percent
of the samples which were classified as highway
class and with larger class conditional proba-
bilities were used. The noisy polygons were de-
leted in the selection process of 75% highway
samples. Among 87 highway polygons, 18 polygons
were connected in filtering process: 12 of them
were in correct location, 5 of them were deviated
one polygon spacing, and 1 of them was deviated
by two polygons from the correct position.

Except for the polygons which were classified
as the elongated area, others went under the large
homogeneous area processing. We have used 1.5
and 1.0 for K, and K, (see section III). This
roughly corresponds to improving the quality of
the external information at least twice as good
as that of the initial information. The condi~
tional probabilities were calculated with 507%
of samples. It was observed that the smallest
class, the mobile home class, has the largest
error covariance. We suggest that the Kalman

tation is intended as a global one, leaving fur-
ther detailed description of the image for further
processing which can use apriori knowledges about
the possible image elements in these global
classes. One can argue, for example, why a small
portion of dry land in a commercial area should be
called as dry land. For commercial area normally
includes some part of dry land. Because of simi-
lar reasons, we modified the verified classes
based on the following rules:

1) Commercial area mixed with dry land is called
as commercial area.

2) Residential, commercial, and dry land class-
es mixed with road classes are called resi-
dential, commercial, and dry land classes,
respectively if they are not required to
connect the road classes.

3) If polygons of mixed classes in the inter-
ior of a large homogeneous area include a
part of the surrounding area they are as-
signed to this area.

1983 Machine Processing of Remotely Sensed Data Symposium

183




The results are presented in Table 2. For
the mixed class. We counted as a correct classi-
fication polygons which were assigned to the mix—
ed class or one of the classes mixed for compari-
son purpose. After terminating at the fourth
stage of the Kalman filter, percentage of correct
classification is improved from 73.2 to 76.1 per-
cent. More importantly 26.8 percent of misclassifi-
cation is reduced to 13.0 percent providing un-
classified samples for further processing. The
reduced classification accuracy of the dry land
class needs to be explained. There are many
small dry land areas with one or two polygons in
the interior of other large homogeneous areas
which disappear from the image after the filter-
ing. However, note that these small dry lands
can be assigned to the homogeneous area surround-
ing them, since dry land is one of the elements
which most homogeneous areas are composed of.
Furthermore, the dry land class suffers more from
the boundary effect than any other class. Drastic
change of shape of this class over the image is
another reason fo the poor classification results.
The results of each stage of the Kalman filtering
reflects the inevitable trade-offs between in-
creasing the classification accuracy and decreasing
the misclassification.

VI. CONCLUSIONS

We have described a new approach to a relaxa-
tion algorithm based on the stochastic dynamic
model and developed the adaptive Kalman filtering
procedure under the stochastic vector assumption.
This procedure has an advantage over the existing
relaxation algorithm in that we can incorporate
statistical apriori knowledge of the intrinsic and
external information into the estimation process.

Results of applying Kalman filter to the
image segmentation is generally good but in most
cases seem to be limited by the boundary effect
and the extreme changes of the statistical pro-
perties over the image. While the initial results
are rather encouraging, further work remains
to improve the efficacy of this approach.
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