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I. ABSTRACT

This paper decribes some evaluation

techniques which might be useful in proc-
essing and classification of remotely sen-

sed data. During the multispectral and
multitemporal assessment and monitoring
of agricultural fields the main goal is

to achieve relicble, low cost methods and

results that can be extrapolated with
success. The histogram clustering
methods can compete in speed with itera-
tive methods. A very simple solution
introduced. By using multitemporal Land-
sat data set vegetation types and the

story cf the growing stages can be exami-

ned with better results than using only

a one date data. When monitoring agricul-

tural area with bigger fields it is more
effective in terms of speed /cost/ and
reliability to use per field classifica-
tion techniques to exploit the contex-
tual information of images. With help of
partitioning algorithm efforts were made
to compensate the effects of in field
inhomogeneities. There is a brief ac-
count on the usage of Bayes optimal
decision rule in classification to
facilitate and express users’ actual

interest in term of a loss matrix. A test

technique of classification results

is developed that gives a flexible tool
and possibility for the user to assess
result in term of loss instead of simple
number or rate of misclassification.

II. INTRODUCTION

The increasing demand to get quick,
valuable, low cost information on the
different phenomena of the Earth surface
is waiting for adequate response from
remote sensing even in countries that
are doing the first steps on the way,
like Hungary. One of the most important
application areas is the agriculture.

There is real need to regularly assess
and monitor vegetated areas. This task
requires flexible, effective and reliable
methods and technology to be developed.

In recent years a few projects were
launched to find tools and methods to as-
sess the status and developement of vege-
tation. These used different data and
evaluation techniques. This presentation
gives a brief account of some results
achieved in one of these projects.

Parallel to finding effective methods
for monitoring vegetation we have to deve-
lop evaluation methods adequate for compu-
ter. Toward a deeper understanding of
underlying physical-agronomical nature of
phenomena we are faced with the problems
coming from usage of statistical models
and techniques. When developing appropria-
te processing methods we aimed to get in-
sight the dependence of results on actual
data and conditions which is iubject of
thorough study in literature.>©

As iterativ clustering methods gene-
rally use Euclidian or similar metrics we
developed a histogram clustering algo-
rithm which is faster and could avoid the
dependence of results on the intensity
range of actual data. To help users in
achieving the maximum correctness or the
minimum loss with classification, we adop-
ted the idea of Bayes optimal decision
technique and developed computer program.

Though usage of multitemporal data
set and per-field techniques reduce the
inhomogeneities of image that should be
treated as noise in land use mapping we
should generally treat these techniques
as complement ones depending on the task
to be solved.

The development of adjustable result
test technique was motivated by the goal
to ease the way toward deeper knowledge of
classification methods.
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ITI. STUDY AREA AND DATA SET

The study area is located at the
eastern part of Hungary on the Great
Plain. From an approximately 7cox700 pixel
/Landsat MSS/ area more than the half has
proven to be very feasible for the purpo-
ses of monitoring the vegetation and ag-
ricultural fields with remote sensing
methods. The terrain is flat and bears a
relatively homogeneous soil body. Micro-
climate and other conditions make this
area suitable for intensive agriculture.
Besides we can find some important crops
here within a limited area e.g. several
types of corn, wheat, sunflower, sugar
beet etc.

In the project we used a set of Land-
sat MSS data collected from an important
period of the growing season in 1981.

Only four scenes were partly cloud free:
June 29 /tA/, July 17 /tB/, August U /tc/,

Sept 27 /t./. In addition to some mainly
qualitativé ground truth data recorded at
farms, we used MKF-6 six band aerial
photos that were taken during a mission
on the 6th July. At last we selected six
subscenes /S2 - S7/ that were representa-
tive enough to the whole area and used
them during the training and test of
classification result.

IV, METHOD
A. PREPROCESSING

As the first step we compiled a de-
tailed land use and vegetation status map
on the basis of the visually interpreted
color composites of MKF-6 bands and ground
truth data from farms. That data served
as reference to training and classifica-
tion. After selecting the neccessary
subimages from Landsat CCT-s we removed
strips from data.- After examining the
geometrical correctness of subimages we
made pixel size correction by a simple re-
sampling using nearest neighbour interpo-
lation. For the multitemporal analysis we
registered the four date Landsat data set
with the help of a computer program deve-
loped to facilitate to remove geometrical
distortions.? Though this correction
method can approximate distortion functi-
ons with two variable pollnomlals up to
six degree we used only the linear mapping
option with the control point set resulting
a 0.4-0.5 pixel residual error in re-
gistration.

To ease further multitemporal analysis
of this agricultural area we interleaved

the registered MSSE7 channels of the four
dates data, creating a new pseudo image
/referred as t,,/. This accumulates the
information coming from vegetation in a
certain period of the growing season and
it has quite a different and broader
meaning than it is of one Landsat MSS
scene.

On the basis of compiled reference
thematic mep digital reference thematic
map was generated and loaded to the com-
puter. It is a one channel image where
pixel values are codes correspond,to each
thematic class,respectively. An example
is shown in grey tone map representation on
Figure 1l.c.

B. TRAINING TO THE CLASSIFICATION

The previously selected representative
six subimages served as input data to
clustering. To achieve a relatively low
cost training we tried to select the
possible least amount of input data that
were representative to classes of the to-
tal area. An iterative clustering program
was developed in our degartmenL that based
on ISODATA algorithm.l At the step of
merging close clusters we used Swain-Tu
distance. As this intercluster distance
does not hold triangular inequality we
added a hierarchical agglomerative merging
procedure to avoid misleading results.
Euclidian and sum of abscolute difference
point to point distance was used.

Besides this iterative clustering
method another algorithm based on multi-
dimensional histogram was elaborated. In-
stead of hashing techniques the conven-
tional box~-type storage method was used.

A requantization through lookup tables
helps to exploit the inherent redundancy
of pixel intensity data to minimize the
neccessary memory. Once the histogram is
built a direct method leads to find local
maxima. The definition of local maximum is
again very simple and is based on the fre-
quency of the tested cell and its closest
neighbours in all dimensions.’ To avoid
peaks originating from noise, histogram
passed through a filter. Smoothing is then
applied to merge too close peaks. This
algorithm requires approximately 1-2 ti-
mes more memory than the iterative method
but 3 times faster. As a cluster assign-
ment lookup table is used this rate of
speeds increases for bigger amount of
subimage data.

It was shown that it is more effective
to use per-field classification techniques
in all those applications, where homoge-
neous objects to be classified are much
bigger than the pixel size.8 It was the
case in our study when monitoring
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agricultural fields of mean size of Yoo
pixels. We modified the algorithm to allow
arbitrary directed edges of partitions.
After partitioning we clustered partitions
by the ISODATA method and with a super-
vised learning we classified homogeneous
objects, and pixels of inhomogene cells

by maximum likelihood method.

To assist training procedure a pro-
gram package was designed to gather in-
formation on the physical/cluster compo-
nents of different thematic classes. This
technique is based on similar methods
that were applied to digital reference
map. The procedure can optionally give in-
formation on the configuration of com-
ponent clusters. This method can offload
the interpretator and contribute to the
reliability of training and classification
reducing the costs and time requirements
of iterative learning.

C. CLASSIFICATION METHODS

We used during this project the maxi-
mum likelihood classification method. We
implemented this algorithn with some
options. The classification scheme is that
given P., Dss Ti i=1,2,...,N we decide
class ¢ if

A (x) Fjpj (x)

P > T.
and Pjpj (x)> Tj
where N is the number of classes, c. de-
notes jth class, P. and p. (x) are “the a
priori probability of class c. and condi-
tional probability density function of
pixel intensities belonging to c; respec-
tively. Ti is the threshold that limits
the A (x)value to be too small in case of
which the pixel does not "resemble" to the
¢; class enough. /If A (x)<T.: x will be
r&jected/. With this a priori weight and
different thresholds one can adjust an ad-
equate classification rate. In the practi-
cal solution however,normal distributions
(p; (x)) are assumed and besides >a lookup
taBle is used to assign each pixel. To
achieve further increase in speed the sym-
metry of covariance matrix was exploited.

To further respond to users’ interest
One can modify the maximum likelihood
decision rule /MLDR/ with help of loss
function L{i,j)%. L{i,j) expresses the
loss coming from a decision when a pixel
actually belonging to c. is classified to
c, - The decision rule that minimize the
expected /or average/ loss to the whole
image 1s called Bayes optimal /BODR/. User

can introduce antisymmetric decisions
which treat transitions from c. to c.
different from c. to c., and can control
the error of omissions™and commissions
independent and by classes. The result of
the classification can be characterized
by the loss instead of number or ratio of
misclassification belonging to each class.

D. COMPUTER AIDED RESULT TESTING

Once a reference thematic map is in
the computer we can compare classification
results by the computer. This is a
convenient way how one can get reliable
information of goodness of classification.
In case of multitemporal analysis of ag-
ricultural fields where there are rather
small changes in positions of boarders
only the thematic codes should be updated.

Generally we are interested not only in
the amount of confusions but the direction
of transitions as well. There are often
differences in loss coming from mis-
classifications. This lcss can also be a
function of user’s interest /market and
Other conditions etec/. We can express this
interest by numerical terms simply entering
a loss function, quite similar to that
Used in BODR method. The difference is
that while the latter can affect the de-
Cision rule itself the former only helps
to estimate the appropriateness of clas-
Sification result.

V. RESULTS AND DISCUSSION

After the preprocessing phase we
clustered data of selected subimages S2-S7
corresponding to different dates /tA, T,
ta, tD’ t,,/. The results reflected wel?
tge temporal changes of vegetation and veri-
fied most the inhomogeneities that could be
seen on aerial photoes. Illustration of
these within-field inhomogeneities ig
shown on Figure. l.a. The results were sim-
ilar with other subimages and dates. One
of the two exceptions was the clustermap of
multitemporal data. That was more homoge-
Neous that can be followed from that the
temporary inhomogeneities might balance
the effect of each other. The previously
partitioned subimage led to similar result.

Because of the inhomogeneities it was
very hard to define thematic classes. It
Was not possible to locate homogene areas
that would represent different growing
stages /subclasses/. Sometimes when rela-
tively uniform fields were found the spec-
tral properties coincided with that of lots
of inhomogene spots scatterred in the
fields.

Before extrapolating training data to
classify a bigger area we tested the re-
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sults in several way. (h Figure 1.b. the
resulted thematic map of maximum likeliho=~
od ciassification can be seen. As the
digital reference thematic map did not
coded the inhomogeneities and expressed
only simple land use categories, with help
of "inclusive" loss matrix we allowed
transitions within categories. Figure.l.d.
Shows the inclusive difference image and
Table 6. corresponds to that. Table.l. was
made taking inhomogeneities into account.

The general difficulty in accurately
classifying sparse villages can be obser-
ved from both Table 1. and Figure 1.d.

One of the reasons is the fact that these
types of villages have lots of bigger
green spots /gardens, groups of trees etc/
and the contribution of spectrally diffe-
rent artificial materials /roads, roofs/
is rather small and spatially nonuniformly
distributed. n fact, the classification

of previously partitioned image /Figure 4,
Table 3./ shows this more clearly. As in
June the hybrid corn is undeveloped the
integrated Landsat pixel itself unsatis-
factory to differentiate these user ca-
tegories. The integration effect of parti-
tioning which was useful to decrease the
effect of field-inhomogeneities, is res-
ponsible for the increasing error in clas-
sifying settlement.

Examining the classification results
of segmented subimage a striking increase
in percent of correct classification can
be observed together with the ability of
distinction more classes than it was poss-
ible from per point procedure. /Figure Uu.
Figure 1.b., Table 3.-Table 1./. This defi-
nite increase in the number of detectable
classes with an average 5 percent improve-
ment in correct classification offer a
possible way to compensate effect of field
inhomogeneities. This can be advantageous
mainly in making different land use maps .
In case of recognition settlements one
possible way of improving results might be
the use of texture information in classi-
fication.

Similar improvement can be seen on
results of the classification of multi-
temporal data /Figure 2Jable 2./. As in
multitemporal data a certain progress
in growth of vegetation is accumulated,
to the correspondence with categories of
a definite date we have to use additional
identifiers to vegetation classes: the
actions and dates of cultivation /Table 2./.
Beyond the smoothing effect of this data
discussed above as an interesting effect
the capture of &lfalfa can be noticed.

This is because of the spectral similari-
ties and the poor training data of alfalfa.

use of
proce-

On rather inhomogene areas the
segmented images in classification

dure can give misleading results. When we
are forced to use per-point classification
methods, on the basis of experiences of the
training and knowledge on the area we can
adjust the classification using the Bayes
optimal decision rule. After we noticed
commission-error in the different classes
in maximum likelihood classification /ori-
ginating mainly from settlement pixels/

we defined a special loss function to cut
this type of error /Table 4./. The numbers
in the matrix have only relative meaning.
As for ‘example the were 117 commission-er-
ror in class 5 /Table 1./ we set L/8,5/= 94
to prevent or make more difficult for the
actually settlement pixels to get into hyb-
rid corn-1 class. Similar were done by
pairs corn -wheats, corn-sugar beet, corn,
wheat-settlement etc. The improvement in
result can be seen in Table 5. Beside the
compensation of bad separability between
spectrally similar or dispersed classes
there is another interpetation of usage of
this technique. If for example one is
interested in underestimation of expected
yield of wheat he should define the loss
matrix similarly as it is done in Table Uu.

Given a reliable classifier, sometimes
the error percents and the confusion matrix
fails to express the financial or other
interest of users. As an example in Table
7. a loss matrix is given with help of
which we wish to express our interest when
assessing classification result of S2, t
subimage. Values here represent estimate
relative loss coming from classification.
The difference with the digital reference
thematic map is computed and the result is
shown in Table 8. /Note that in the diffe-
rence weighing loss matrix in Table 7.
there are nonzeroces at positiones corres-
pond to correct classification. It was used
like that to avoid zero in ratio comparison/
In Table 8. percent errors should read as
contribution ratio within the total error.
The difference with percent losses are
striking.

VI. CONCLUSIONS

It is substantial to choose the ade-
quate technique in processing remotely.
sensed data. The optional use of multi-
temporal, segmentation, Bayes decision
classification techniques depend on the
problem and conditions of area. The ad-
vantage of multitemporal and per-field
techniques are obvious and the result tes-
ter difference-method seens feasible. The
use of more appropriately detailed digital
reference thematic map might contribute to
the reliability of classifications a lot.
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