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I. ABSTRACT

This paper will generally present a class
of image enhancement operators that have
been referred to as "Local Adaptive”. It
will contrast local and global operators
and describe the cost tradeoffs associated
with each. It will briefly summarize
previous implementations of local adaptive
enhancement. Finally, it will conclude by
demonstrating two classes of local
operators and their fast implementation on
a general purpose image processor.

IX. INTRODUCTION

When a user applies an enhancement
operator, the intent may be to produce a
visually pleasing result, or it may be to
enhance the apparent information content
of the image. These two intents may
actually conflict, i.e. information
extraction may produce a less visually
pleasing image. From the point of view of
information extraction, we can look upon
image data as a matrix of small and large
scale noise with bits of information
unpredictably scattered throughout. Some
users will want to filter out the
extraneous noise and glean from the image
those bits of useful information. In many
cases, this means enhancing medium to
small scale artifacts such as edges and
textures while suppressing large scale
shading and small scale random noise.

Global enhancements, such as a
contrast stretch, change all the pixels in
an image based only on global information.
In other words, the same transformation is
performed on each pixel in the image. In
some cases, the large scale noise in the
image, e.g., sensor shading or large
changes in global image intensity, can
interfere with the construction of an
optimum global enhancement. Local
adaptive operators enhance an image by
transforming individual pixel values based

on the characteristics of their
surrounding neighborhoods. This can be
expressed in the following form:

outputy,y = F [inputyx,y , (1)

G [H [input,x,y,w] 1 1]

where:

outputy,y and inputy,y are pixel values
at location x,y, for the output

and input images respectively.

F [ 1 defines the local adaptive
operator.
G [ 1 produces a fixed set of summary

values for sets of pixels.

H [ 1l is the set of all pixels in the
local window centered about x,y.

w is a constant that defines the
local window size.

The global enhancement can now be
seen as a simplification of equation (1)
where w is set to a very large number
(greater than the size of the image). 1In
this case, the function H includes all
pixels in the image regardless of x and y
and therefore the function G will always
return the same values and dictate the
same transformation.

In the 1local adaptive case, each
pixel can potentially undergo a different
transformation, because each pixel has a
unique local neighborhood. If an image is
made up of both light and dark areas, i.e.
its pixels represent more than one
population, then global operators may
reduce the information content of the
image rather than increase it. This 1is
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because a given intensity level in one
area may have a different meaning that the
same intensity level in a different area.
Global operators do not maintain this
distinction; they treat all pixels with
the same intensity 1level as the same,
regardless of their surroundings. On the
other hand, local operators try to adapt
to the neighborhood around each pixel,
enhancing locally meaningful relationships
that a global operator might ignore. For
example, in the dark areas of an image we
might want to brighten the data to better
distinguish features, while in the 1light
areas of the same image we might want
darken the data to again enhance local
features. An operator which can do
different things based on local conditions
has been called "Local Adaptive”.

III. PARAMETRIC VERSUS NON-PARAMETRIC
LOCAL ADAPTIVE OPERATORS

Parametric operators dgenerate
enhancements by acting on locally derived
summary statistics. In other words, they
calculate the mean and standard deviation
of a finite window around each pixel and
then apply a transformation based on those
summary statistics. Nonparametric
operators actually calculate the histogram
of each finite, local window, and then
transform the center pixel based on that
local histogram.

The form of function G in equation
(1) can vary. Wallisl described a
parametric operator based on a locally

derived mean and standard deviation. 1In
other words:

G [Wg,y] ==> MEANx,y and STDEVx,y (2)
where:

Wx,y is the set of pixels in the window

about X,y or simply H
[input,x,y,wl.

and

F [inputx’y, HEANX,Y’ STDEVX,Y] ==> (3)

outputy y = MEAN' + (STDEV' / STDEVx,y)
* (inputx,y - HEANx,y)
desired

where MEAN' and STDEV' are the
characteristics of the output.

In the described implementation,
these local moments were not calculated at
each location; rather, they were
determined for non-overlapping areas and
the actual transformation was generated
for each discrete location by a bilinear
interpolation scheme. It has since been

recognized’ that equation (3) can be
implemented at high speed by the use of
convolution operators. In this 1light,
equation (3) can be approximated by:

outputy,y = MEAN' + (4)

inputy,y - LOW [Wx,yl

SDK *

LOW [ linputy,y - LOW [Wx,yll ]
where

LOW is a low pass convolution (that
yields local mean)

MEAN' is a desired output mean

SDK is a constant that is related to
the desired output standard
deviation

A similar formulation has been
proposed by Narendra and Fitch2,

A non-parametric approach involves
the calculation of local area histograms.
In this paper, we describe a function G in
equation (1) that returns a rank for the
central pixel relative to its
neighborhood. Specific types of rank
filters have been described in Huang et
al3, Nakagawa and Rosenfe1d4, Mannos and
Wolfe8, Tyan3 and Heygster®. They include
MIN, MAX and MEDIAN filters. Our
implementation uses the following
equation:

G [Wx,yl ==> RANK [inputy,y, Wx,yl (5)
and
F linputy, y, RANKy,y]l == (6)

outputy ,y = k * RANK [inputy,y, Wx,yl
where
RANK returns the CDF

location and
population

value for that
surrounding window

k is a radiometric control constant
that maps the output values onto
a desired range

This amounts to a 1local adaptive
histogram equalization (LAHE). It can be
adapted to perform any histogram based
transformation (e.qg. normalization,
hyperbolization) by modifying the scaling
transform to be appropriately non-linear.
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IV. IMPLEMENTATIONS IN AN IMAGE PROCESSOR

One of the major factors that has
limited the widespread application of
local adaptive filtering has been the
enormous computational expense involved.
For example, to perform the above
mentioned LAHE operator on a 512x512 image
using a 63x63 window theoretically
involves 262,144 separate histograms of
populations of 3969 pixels. However,
equations (4) and (6) can be economically
implemented in a general purpose image
processor. We have used a Model 75 Image
Processor, manufactured by International
Imaging Systems. Briefly, it consists of
a pool of refresh memories whose data is

directed through lookup tables, scroll,
and zoom hardware into any of three
high-speed processing pipelines. These

pipelines allow full precision summing of
any or all data streams from the refresh
memories, followed by a 1lookup table
transformation of the results. The
resultant three data streams can be
directed to digital-to-analog converters
which drive red, green, and blue inputs of
a color display monitor. Alternatively,
the data can pass back through a feedback
path to a higher precision processing unit
and on to the refresh memories, again
through a final scaling lookup table. The
pipelines are frame-rate synchronous,
producing a new resultant image every 30th
of a second, resulting in a compute time
of 127ns per pixel. The implementations
in the image processor are therefore very
fast. Execution times are dependent on
the window size chosen and other optional
parameters but they range from a few
seconds to a few minutes for the entire
512x512 image.

The RANK function of equation (6) is
implemented with the scroll, image
summation, lookup table and feedback path
elements of the image processor. The
basic algorithm computes the sum of:

SIGN [inputy,y - inputj, jl
for all elements inputi,j in Wx,y.
where:

SIGN Ix] = 1 if x is positive
0 if x is zero
-1 if x is negative.

This sum after appropriate
is equivalent to the average of two
adjacent CDF values, producing a more
balanced result than the raw CDF. The
SIGN function can be computed and
accumulated for the entire image in one
frame time. Since it must be computed
once for each element in the window, it

scaling,

follows that the algorithm will take one
frame time per window element to complete
(plus an additional frame time to scale
the resulting sum to positive values).

In an attempt to achieve higher
speed, we have explored techniques for
subsampling the 1local window, thereby
accelerating the collection of local

summary statistics or histograms. This
amounts to modifying the function H in
equation (1). We have found that sampling
only those local neighbors within w pixels
of x,y that 1lie on radial "spokes"
produces visually identical results in
less time. This is ©particularly useful
because the number of local neighbors to
be examined (and therefore the execution
time) rises 1linearly with window size in
the radial spoke sampling, while it rises

by the square of window size in an
unsubsampled neighborhocd. Also, the
radial spoke sampling concentrates
attention on nearby neighbors in
preference to distant neighbors.

Therefore, although it can be found to

introduce artifacts, they are only
associated with large pathological
situations; isolated extreme values are

more properly handled.

The LAHE operator described in
equation (6), like global histogram
equalizations, can prove to be toc harsh.
This is particularly the case where, for
example, 7 bits of signal and 1 bit of
noise are stored in an 8 bit image. The
ranking algorithm will separate pixels by
their noise component in areas where the
signal component is flat (uniform areas).
Our image processor implementation allows
the user to control the enhancement of
pure noise by effectively adding a "fuzz"
factor to the ranking algorithm. 1In other
words, the wuser <can define a threshold
such that neighboring pixels that differ
by less than that threshold are considered
"equal”™ and ranked equally. The image
processor implementation allows the
introduction of this threshold without
impacting execution time.

V. EXAMPLES

Figures one thru nine show the effect
of both the non-parametric and parametric
local adaptive operators, on a medical
x-ray, at various window sizes. Figures
10 thru 13 show the operators on Landsat
MSS data. Of particular interest is the
effect of the difference threshold, as
indicated in figures 11 and 12.
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