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ABSTRACT

A two dimensional filter based on the
difference between a pixel value and a
predicted value for the pixel is proposed.
The prediction is based on values from dif-
ferent subsets of the image. The predic-
tion is based on a random field model for
the image, and it is of kriging type, i.e.
the predicted value is linear in the remain-
ing pixel values and has minimum variance
among such estimates. By choosing the pre-
dictor subset in a suitable way one can
obtain reasonably good enhancements of
edges and linear features.

I. INTRODUCTION

A major problem in analyses of Landsat
imagery is the enhancement of linear fea-
tures, especially in geological applica-
tions where the interesting linear features
very often are subtle or fuzzy. Therefore
edge enhancement techniques based on e.g.
gradients or on "usual” high pass filter-
ing will often give unsatisfactory results.

The basic idea behind the filters pro-
posed in this paper is the following. A
linear feature in an image represents some
kind of irregularity with respect to the
surrounding pixels. A measure of the mag-
nitude of irregularity at a specific point
is the difference between the actual value
for that point minus an interpolated value
based on the remaining pixel values. In
order to obtain an interpolation that takes
the random nature of a Landsat scene into
account one can model the scene as the out-
come of a stationary random field and then
determine the MMSE (Minimum Mean Squared
Error) solution to the problem. If the
interpolation is based on all the surround-
ing pixels there will very often be a close
connection between the actual and the inter-
polated value, especially in cases where
edges and troughs are "developing" gradually.
In such cases it will be an advantage only
to use pixels that had a distance greater
than a threshold value in the prediction.
This is illustrated in Table 1, where three
signals with troughs of different widths
have been filtered with two filters. The
first filter corresponds to the Laplacian

TABLE 1. Two Simple Edge Enhancement Filters. Three signals (~ s) showing
troughs of different widths, and the resulting signals after apply-
ing central filters with coefficients (-1, 2, -1) (~ A) and
(-1, o0, 2, 0, -1) (~B).

] 3 3 3 3 0 3

As 0 0 3 -6 0

Bs 0 0 0 -6 0

s 3 3 1% 0 1% 3 3

As 13 0 -3 1% 0

Bs 1% 3 0 -6 0 3 1%

] 3 1 0 3

As 0 0 -2 1

Bs -2 -4 - 1
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and estimates a second derivative. It is

given by

. o= -3, + . - S, .
Asl Sl—l 251 s1+l

The second filter has weights with the
same numerical values, but does not use
the immediate neighbors. Instead values
with lags 2 are used, i.e.

Bs, = -s, + 2s,
i i-2 i

T Sis2 -

We see that the advantage of the second
filter is that the wider troughs are de-
tected better. The disadvantage is that
there is a stronger ringing effect. 1In
the sequel we shall construct the inter-
polations based on "remote" pixels taking
the spatial correlation into account. 1In
order to distinguish this method, where
the interpolation constants use the ran-
domness present, from other schemes with
fixed coefficients (e.g. the Laplacian) we
shall use the term prediction instead of
interpolation.

II. PREDICTION

This section contains the necessary
results on MMSE prediction of correlated
variables. Some of the results can be
found in the literature on multivariate
statistical analysis, cf. Anderson!, others
correspond to results on kriging given in
the geostatistical literature, cf. Journel
and Huijbregts?®.

We consider a random variable Y that
is correlated with the n-dimensional random
variable X (in the sequel a corres-
ponds to a vector and a to a matrix).
We assume that the mean and dispersion
matrix (variance~covariance matrix) of the
combined variable (Y,X')' (a ' corres-
ponds to the transpose) is

)-C )
- %)

Here 1 denotes an n-vector of ones.
this setup we have the following

Q

]

With

Theorem 1.
tion function for

The MMSE affine predic-
Y based on X 1is
1

¥, = u(l-c) + o' 277 X,

where

c=¢'3z 1

i

1

E'E_l' i\{1

is unbiased. The unbiased linear MMSE pre-
diction function is

5 _ l-c ;, -1
Y2—<g'+—d—}_>2 X ,

is the sum of the elements in

where

a=1'3"1

1

is the sum of the elements in ;al.

Proof. For the sake of clarity we
shall sketch the procedure for ?2. The
mean of a predictor a'X is wmpa'l, and
unbiasedness thus requires

a'll=1,
i.e. the sum of the coefficients a; must
equal 1. Using the unbiasedness the mean

squared error of a'X is

E(Y—g'§)2 = V(Yy-a'X)

(P90

=% - 2a'g + a’

1l

g

a .

In order to minimize this expression - still
under the constraint a'l = 1 - we intro-
duce a Lagrange multipler A and obtain

2

F(a,x) = 8% - 2a'c + a'za + A(a'l - 1) .

Differentiation gives the equations

F _ s +2ta+Al=0
a—a- = —_— = =
aF_ ' - =

% - al-d o -

Solving these gives the desired result.

A simple corollary to the theorem is

Corollary. For ¢ close to 1 the
unbiased predictor
~ _ l . -1
Y3-c~0_£ §'

is an approximation to the MMSE linear pre-
dictor.
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Proof. Trivial.

The properties of the predictors can
be stated somewhat stronger if we assume
normality of the random variables. E.g.

Y, will be MMSE among all prediction func-

tions, not only among all affine.

IIT. OI-FILTER

In this section we shall define the
new filters. They are using a prediction
of a single pixel value XO 0 based on

r

(2p+l)2 - (2q+1)2 pixel values with a
"distance" of at least g from X0 0" cf.
’

Table 2. We call such a filter an OI(p,q)
filter as a mnemonic abbreviation for
outer box of size 2p+l and inner box of
size 2g+l. The boxes defining the predic-
tor sets are squares, but this has only
been done for notational reasons.

Y = XO,O

X' o= (X g eeen Ky pr eeer Xy e e
Xq+1,-q" ¥-g-1,-q" "7 Xep,p)

i.e. Y is the central value in Table 2

and X consists of all the elements be-

tween the two frames organized in a
(ZP+1)2 - (2q+l)2 vector.

With these definitions it is now
possible to use the predictors in Theorem
1 and the corollary.

For small values of p and g one
can easily write down the dispersion matrix
L for X that is used in the computation
of the predictor coefficients. For larger
values, however, the following remarks can
be useful in the design of a computer pro-
gram for calculating the values. More

TABLE 2. Predictor Variables. The observations (pixel values) between the
two frames are used in predicting the observation X0 0 in the
OI(p,qg)-filter. ’

X . X e X co e X . X
P, P P, —4d p,0 P9 P.P
X . X . X .o X cee X
q,-p q,-q 4,0 q,9 q,p
X e X .. X .. X ce. X
0,-p 0,-9 0,0 0,q 0,p
X e X . X P X coe X
4, -P -4, -q -q,0 -q,9 -q,p
X . X .. . X - X-
-p, -P -p, -9 -p,0 -p,q prP

We now consider the image as the out-
come of a stationary random field with co-
variance function

Y(,3) = B - W) (K gy ~ W)

where

uo= E(Xs’t)

is the common mean. We define

as a block

specifically we shall write Z
(Lij)' i=1, ..., 2p+l, J=1, ...,

matrix
2p+1.
For s = 0,
(2p+1) x (2p+1)
putting the elements equal to

..., 2p we define the
Toeplitz matrix g by

CHV = Y(-Iu_vll S)I Y,V = 1, ..., 2p+l

We partition the integers
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T =1{1, ..., 2p+1}

into the sets

b~
I

{lr ceer P_q}

H
I

5 = {p-q+l, ..., p+q+l}

[
1l

3 {p+g+2, ..., 2p+1} .

For i ¢ Il U 13, j e I1 U I3, i< j, we
simply have that the (2p+l) x (2p+1)
matrix éij is given by

Lij 7 C5-1
For 1i ¢ Il, j e I,, we obtain the (2p+l) x
(2p-2q)
no. v, Vv € IZ,

matrix éij by deleting columns
from C. For i ¢ I

=q-it
j e I,. i < j, we obtain the (2p~2q)
by deleting columns

2'

x (2p-2q)
no. v, Vv € 12, and rows no. 4, U e I

matrix I..
L34
2 from

j eI we obtain the

C. .. For 1ie1I,, ’
Fy-1 2 3
(2p-2q) x (2p+1l) matrix Lij by deleting
rows no. W, u € I,, from gj-i' Finally
we have
2.. =%x'. for 1i> 3.
£  H Z
We write the vector ¢ as
[} — 1] 1
g' = ogr --er Top41) -
We define
e = (@yr +vev dppyy)
by putting
du = y{(p+l-uy, i-p-1), pu=1, ..., 2p+l
2 1] - 1
Now, for i « Il 0] I3 we have o; =¢i-

For 1 ¢ 12 we obtain the (2p-2gq) row

vector gi by deleting the elements du,
ueIz.
With the notation given above we now
have the following

Definition 1. An OI(p,q) filter is
given by
' X, o - Y.,

where Yi is one of the predictions of

X0 0 obtained by applying Theorem 1 or

the corollary.
IV. RESULTS

The OI-filters have been applied on
several Landsat scenes in order to enhance
linear features. As the true correlations
are not known, it has been necessary to
estimate these. This has been done by
ordinary mean product deviations, i.e.

A . . _ 1 - -
Y(lrj) = N 2 2 (XI,S X) (xr+i,s+j X) ’

r s
where

- 1

X=c3) ] x ,

N r s IsS

and N is the number of observations used

in the estimations.

In Table 3 are given estimated corre-
lations based on 400 x 400 sample values
for Landsat MSS channel 7. The area, where
the measurements are taken, is the south-
western part of Jameson Land in East Green-
land. The scene has been corrected geo-
metrically and the pixel size is 50 x 50
meters (app.). It is seen that the corre-
lations do not tail off very rapidly.
Therefore the neighboring pixels contain
much information on the individual pixels.

In Table 4 are given the resulting
filter weights for two OI-filters based on
the predictor given in the corollary. It
is seen that there are major differences
between the weights in the two cases (which
of course is not surprising).

It has turned out that filters of the
form ©0I(5,1) - 0I(5,3) give rather good
results. 1In Figure 1 is compared a stan-
dard Laplacian filtering and an O0OI(5,1)
filtering of an area around Igaliko in
South Greenland. In both cases the upper
15% of the distributions of the filtered
images have been marked black, the rest
white. There are substantial differences
between the two, and several structures
are more easily recognized in the OI-
filtered image. We therefore conclude
that these filters represent a useful
supplement to other line- and edge-enhance-
ment filters.
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Laplacian and 0OI(5, 1) Filters. The area analyzed

FIGURE 1.

is around Igaliko in South Greenland.
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TABLE 3. Correlation Function. Part of the estimated correlation function

for Landsat MSS channel 7 based on 400 x 400 pixels from Jameson
Land, East Greenland. The scene has been corrected geometrically,

and the pixel size is (app.) 50 X 50 meters.

i 2 0 1 2 3 4 5 6
6 .15 .18 .21 .24 .24 .24 .23
5 .20 .24 .27 .29 .28 .27 .24
4 .28 .32 .35 .35 .33 .29 .26
3 .39 .42 .44 .42 .37 .32 .27
2 .55 .60 .55 .48 .41 .34 .28
1 .77 .73 .65 .52 .42 .35 .28
0 1.00 .81 .64 .53 .41 .32 .26

-1 .77 .69 .55 .43 .35 .29 .24
-2 .55 .48 .40 .33 .28 .23 .20
-3 -39 .33 .28 .24 .21 .18 .15
-4 .28 .23 .19 .17 .14 .12 .11
-5 .20 .16 .13 .11 .09 .08 .07
-6 .15 .11 .09 .07 .06 .05 .05

TABLE 4. Filter Weights. The filter weights (x 100) for an 0I(2,0)- and an
3.

0I(2,1)-filter based on the correlation function given in Table

i 2 -2 -1 0 1 2 -2 -1 0 1 2

-2 2 3 10 -11 7 8 -1 -4 -18 7

-1 1 -14 -19 -1 -6 -10 0 0 0 -17
0 9 -31 100 -31 9 -16 0 100 0 -16
1 -6 -1 -19 -14 1 -17 0 0 0 -10
2 7 -11 10 3 2 7 -18 -4 -1 8
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