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SUMMARY

For some time the Remote Sensing Industry has
been concerned at the lack of standards for eval-
uating classifications. It is suggested that a
good measure of classification accuracy should be
site-specific and should take account of both the
errors of omission and commission. Furthermore it
is suggested that a "good" measure should be one
for which the probability distribution is known
and for which one can make statements of statistic-
al significance. The Jaccard co—efficient is pro-
posed and it is shown that it meets the aforement--
ioned criteria. Lastly it is strongly recammended
that the precise nature of an analyst's method of
measuring accuracy be explicitly stated along witli
the associated statistical significance.

I. INTRODUCTION

It is part of our remote sensing comrmun-
ity's folklore that the aspirant analyst passes
through three phases :- euphemism, depression
and realism. I would opine that an analyst had
reached the third stage when he or she poses
the question :- "Just how good is this product?”

There are at least four situations in which
a remote sensing analyst would want to assess the
quality of a remote sensing product, viz :—

i) A final classification, produced by
some semi - or fully-automatic algorithm is to
be evaluated in terms of existing surface ref-
erence data,

ii) Two classifications, produced by two
different techniques ( e.g. a 4 - band landsat
classificationvs a first - two - principal -
components classification) are to be compared
spatially,

iii) Temporal change is to be assessed from
two classifications based on imagery of the
same spatial area, but at different dates and

iv) In the geographical data base situat-
ion when the analyst is seeking out associat-
ions (i.e. The distribution of a herbiwvor in
relation to veld types).

Before proceeding any further it would be
wise to define some of the terms introduced

above. A classified image, or classification is
understood to be a distribution on a two dimen-
sion surface of a quantity called the "class"
which can take on one of n mutually exclusive
and exhaustive values. Furthermore the surface
is assumed to be digitized into r rows and c
colums, the rectangular elements being called
pixels. When camparing two images, or classific-
ations it is assumed that the pixels of each
can be brought into a one - to - one relation-
ship with one another. This may lead some read-
ers to think that only rectangular areas may be
campared. This is not so. If both classificati-
ons are imbedded in a rectangular grid and then
multiplied with (¢,1) mask then areas of any
shape may be compared. (The mask being zero
everywhere except for those pixels where both
classified images are defined, in which case
the mask takes on a value of unity). In this
way it is possible to compare a classification
with surface reference data based on randan,

or isolated samples. However it is not possible
to compare two polygonal areas, unless they
have been "rasterized" to lie on the grid.

Before motivating the need for a measure
of spatial association it is necessary to con-
sider whether spatial evaluation should be
"site-specific", or not, in the sense of Mead
and Szajgin (1982). I would argue for site-
apecific assesment from three standpoints,
viz :-

i) In assessing change or differences the
spatial nature of the process should not be ig-
nored,

ii) Site-specific measures are likely to
provide a lower limit to non-site-specific mea-
sures and as such are more conservative measures
(important in an industry noted for its "over-
sell" !) and

iii) Non-site-specific measures have always
offended my sense of mathematical properiety and
have left me with the feeling that they are just
not Kosher / Halaal.

Having motivated a site-specific measure of
association the next question that needs to be
proposed is :- "what criteria should a measure of
spatial association fulfill?". I would suggest
the following five criteria :-
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i) The measure should take into account
the spatial nature of the agreement and the dis-
agreement,

ii) The measure should be relatively inde-
pendent of pixel size,

iii) The measure should be independent of
the total number of pixels,

iv) The statistically significant critical
limits should be available and

v) The measure should be statistically
robust.

These criteria will be expanded upon below :=

2. THE MOTIVATION FOR THE JACCARD CO-EFFICIENT.

A. INTRODUCTION

Imagine that there are two classifications
to hand. Let the first be an autamatic classifi-
cation with all pixels allocated either to class
"A" or to "unclassified". The second shall be
Surface Reference Data with all pixels allocated
either to class "B" or to "unclassified". If the
two images are transparent and are overlayed then
the arrangement shown in Fig.l will result.

There are four distinct areas on the SINS
map in Fig.l, viz :-

i) The cross-hatched area of positive ass-—
ociation, or "positive matches". The number of
pixels in this class is TAB,

ii) The horizontally-hatched area of "commis-
sions", i.e. the area where the classification
was committed to class "A", but where in fact
there was no support from the surface reference
data. The number of pixels in this class is Dpp-

iii) The vertically-hatched area of “"om—
issions", i.e. the area where the classification
omitted class "A", but where the surface referen-
ce data suggested class "B". The number of pixels
in this class is n_.

iv) The blanﬁB area, i.e. the area "negative-
matches”. The number of pixels in this class is

nab.

The relationship between these four classes

is :-
NAB + Mab = TA (1)
A + NaB = DB (2)
npR + Nab + NaB + Nab = N (3)

The relationships are also shown in Table 1.
(The name SINS comes fram the Penitential Rite:-
"That which I have done and that which I have
left undone", the sins of comnission and omiss—
ion ! : see English Book of Cormon Prayer, or
the Roman Catholic order of Mass). The SINS table
shows the full nature of the spatial relationship
between a class (i.e. "A") in one image to a cor-
responding class (i.e. "B") in a second image.If
both images are made up of m classes then it is
possible to show the inter-relationships between
the two images in a confusion matrix, i.e.Table 2.
In a confusion matrix only the positive matches
are shown. It is possible to re-compute the con-
fusion matrix and present it as row or column

percentages or even with positive matchesdivided
by the total number of pixels,N. Each varient
vields a different insight into the nature of the
inter-relationship of the two images.

Before giving consideration to the problem

of finding a measure of association it is necess—

ary to consider one preliminary cuestion :-—
"Are negative matches relelvant 2"

Do they yield any relevant information ? Consider
twopairs of classes A and B. If in one classificat-
ion there are more, or fewer negative matches does
that convey any usefull information ? I would sugg-
estnot. Furthexmore if the quantities on the right
hand sides of equations (1),(2) and (3) are con-
sidered fixed (i.e. ny, ng and N) then only one of
the four remaining quantities (nag, nah, Nap and
Ny, ) may be chosen with conplete freedom. Hence-
forth I shall disregard the negative matches, ng.

Thus T am seeking some statistic of the form:-

J = f(npps Naps DPABR)
The quantiities np, ng and N are fixed by (i) The
total image (for N) (ii) The classification proced-
ure (for na) and (iii) The surface reference
data collection process (for np). While npap measures
the spatial association and npp, nyp measure the
errors.

Fig. .. A SINS MAP

A comparison of Surface Reference
Data with a Classified Image.

Pixel

':nﬂb

= A only Surface Reference Data.
I B. only Classified Image.
# Both A 8B

The problem faced here is mathematically iden-
tical to that found in numerical taxonomy. Sokal
and Sneath (1963 : 128 ~ 141) have reviewed all the
16 possible measures of association between a pair
of binary classifications. Applying Occam's razor
("It is vain to do more what can be done with few-
er"”) (Russel 1946 : 463) to this problem leads me
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to choose the simplest measure, the Jaccaro co-
efficient :—
n
2B (4)
ngp + nap + nap
(Occam's razor is the philosophers precaution agai-
nst Murphy's law). The Jaccard co-efficient has
been discussed by Jaccard (1908) and Sneath (1975).
It has the following properties :-—
i) If there are no positive matches (i.e.
nag = 0) then J = 0 and
ii) If there is a perfect gpatial agreement
between A & B, i.e. npg = ny =ng then J =1
iii) If the pixel size is changed by a factor
of 2 then the number of pixels will change by (%)
and this will not effect J.

J =

Thus we see that J satisfies the first two
criteria suggested in section I.Criteria ( 1lll)and
(1v) (Independence of total number of pixels, N and

statistical distribution will be considered together.

B. THE HYPERGEOMETRIC DISTRIBUTION

If the total number of pixels of classes A and
B are fixed, and if the total number of pixelsN, is
fixed then only one of the quantities (n,p, npap,
nap and n,) may be chosen with perfect freedom.

Thus I am focusing attention on the spatial arrange-

ment. Using equations (1) and (2) it follows that
naR aB
J = —
(NB-NAB) + (NA-TAB) +1AB Np + np - PAB

= £ ("AB) (5)

so J is a function of MB only as M, "B are fixed.
The relationship between J and PAB is shown in
Fig.2. From a consideration of equation (5) and

an inspection of Fic.2 it may be seen that J and

nap satisfy a one-to-one relationship with each
other. Thus if the statistical distribution of Npp
were known then the statistical distribution of J
would be known. In order to elucidate the nature
of the distribution of MAB it is necessary to make
an assumption and to formulate a null hypothesis.
Assumption : It is assumed that the surface refer-
ence data are spatially specified, a prior: and
may be looked upon as fixed, (i.e. the ny are fix-
ed)

Hypothesis : The classification process all-
ocates the spatial location of the class "A" pixels
at random, and does not allocate the same pixel
twice.

The clue to finding the statistical distribut-
ion is to recognize that the allocation process is
the reversal of "selection without replacement”.
The problem may be formulated in statistical jargon
as follows :-

"From a population of N pixels, np of whom
belong to class B, draw Ny, at random,
without replacement. What is the probabil-
ity that of the sample, size na, there will
be nyp who are of class B?" Write this as:

P(X = Npp / np,ng,N)
with Max(¢,np-N+ng) < nap < Min(np,ng) (6)

1.8 Fig.2 JRCCARD vs. NRB
N: 358
NA: 28
8.8 4+ NB: 28
a.8 -+
o
i
S 8.4+
Q
T
-
Q.21
e
! 4 8 12 16 2B
- N

AB
This is the statement of that statistical
sampling process known as the "Hypergeametric
distribution". See Kendal and Stuart (1969 Vol 1:
133-135) . The major properties of the Hypergeomet~
ric distribution are summarized in Appendix 1. The
probability mass function is :-

- R T N
P(X = nyp / np,m,N) = [ np - n, g/ ()

This distribution is shown in Fig.3

The minimum value of n,, shown in equation 6
suggests that if both np anéBnB are relatively
large with respect to N then n,p cannot help but
be large. This suggests that J is not independent
of the total number of pixels, N (i.e. criterion
(idd)). However the probability distribution of
equation (7) allows for the influence of N. Thus,
in turn the probability distribution of J will take
N into account.

Testing Hypotheses. The null hypothesis: H¢ will
be as stated above. There are two alternative Hypo-
thesis : HA

(i) The positive association between A and B
is so that J will be greater than the J upper
critical limit, e.g.:-

J > J97-53

(ii) Disassociation between A and B is so
great that J will be less than the lower critical
limit Jiower €-9-.

J < 5.5

The camputation of the critical values is
discussed in Appendix 11, and shown graphically
in Fig.4
C. BINOMIAL APPROXIMATION

The computation of the critical limits is
time-consuming so there exists some incentive to

find a computationaly simple approximation. Luck-
ily such an approximation exists, see Appendix I.
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The binomial distribution has critical values
wl}ich can be found in tableg for small n, ( See
Diem and Lentner 197¢) or can be roughly
approximated from

Ny

N, —— %

%
‘A N Zc (nA' DA(N-HB)) / N (8)

where z. is the appropriate unit normal distributi-
on critical value (see Abramowitz and Stegun 1968:
976 - 977)

3. SIMULATION AND RESULTS

In order to test the theory introduced in
the previous section a simulation was performed.
A small classified image (30 lines by 30 samples,
i.e. 900 pixels) with five classes ("Shadow",
"erge", "Grass", "Asphalt" and "Vegetation")
was chosen. For each class the mean, median, stan-
dard deviation, lower 2%% and upper 97%% confid-
ence limits were computed using both hyperceomet-
ric distribution and the bincmial approximation.

The simulation, under the null hypothesis,
was performed in the following manner :-—

i) From the surface reference data the num-
ber of pixels in each of the m = 5 classes were
counted.

i.e. ng (i) for classes 1 =1,2, ..., m
note that
m
Lng (1) = N, the total no. of pixels.
i=1

ii) A N x 2 matrix was created. Colum 1
contained the class number and colurn two con-—
tained a random number. The first ny (1) rows
were class 1, the second ng (2) rows class
2 and so on.

iii) Then matrix was sorted on colum 2, i.e.
sorted by the random number. This effectively
randomised the order of the classes.

iv) The first column was then read into an
image and became the "classified image".With this
classified image it was possible to compute the
Jaccard co-efficients for each of the five clas-
ses.

By repeating the procedure a number of times
estimates for the distribution of the Jaccard co-
efficient could be obtained.

The results of the simulations based on
the hypergeometric and binomial distributionsg
are shown in Table. 3.

The simulation algorithm is described in
greater detail in Piper (1983), the evaluation of
the Jaccard co-efficient is done as part of the
Portable Image Processing Suite (P.I.P.S.).
P.I.P.S. is a Univac implementation of V.I.C.A.R.
and is described in O'Donoghue et.al. (1983a) and

its usage is described.in O'Donoghue et.al. (1983b)

T Fig.3 P.OLF of PIHAB!

FROBAREILITY

Fig.4 P.D.F & C.O.F.
af JRACCARD

P.D.F & C.D.F.

g.2 8.4 (.6 0.8 1.6
JRCCARD

4. DISCUSSION AND CONCLUSIONS

In the introduction the spatial assessment or
camparison of two images was motivated. To many re-
mote sensing analysts the primary concern lies in
the evaluation of some automatic, or semiautomatic
mapping scheme in terms of a suitable set of Surfa-
ce Reference Data. It was strongly suggested that
all evaluation processes should be site-specific,
if for no other reason than that they yield con-
servative measures.

By considering an analogous problem in numer-
ical taxonomy it was suggested that a parsimonious
measure of spatial association, based on the "SINS"
map would be the Jaccard co-efficient. Furthermore
it was suggested that the desired co-efficient, or
measure should satisfy five criteria. The Jaccard
co—efficient will now be discussed in the light of
these criteria.

(i) Does J take into account the spatial nat-
ure of the errors? An examination of equation (4)
shows that it measures the effects of both the om-
issions and camissions. If the measure is to be
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site-specific then it is necessary that it meets
this criterion.

(ii) If the measure were not independent of
pixel size then by the simple stratagem of increa-
sing or decreasing the pixel size a co-efficient
of any arbitary significance could be generated!

(iii) For the total number of pixels criterion
consider the following example:- If the number of
pixels of class"A" and of class "B" were both equal
to 5¢ then the overlay could vary from ¢ to 5¢ if
the total number of pixels was 1lé¢. However if the
total number of pixels was only 75 than the overlap
would only range from 25 to 5¢. Thus it 3S necess-
ary to specify that the measure of association
be independent of the total number of pixels. Now
the Jaccard co-efficient is not independent of the
total number of pixels. To satisfy this criterion
the statistical distribution of the Jaccard co-
efficient was sought. It was shown that J and n
were in a 1:1 relationship and it was further sugg-
ested that njp fcllowed an hypergeometric distribu-
tion. By means of a simulation it has been possib-
le to verify these suggestions. Thus by examining
the significance of the Jaccard co-efficient we
have a measure which is independent of the total
number of pixels, N.

(iv) If the user wants to be sure that a sat-
istically significant association exists between
classes "A" and "B" then he needs to be able to
campute the critical limits of J. The computation
of these units was demonstrated in section 2. The
result of this is that if the user finds that J >
J! (where J! = upper 97-5% critical value) then he
can be 95% certain that class "A" is not randomly
distributed with respect to class"B". To translate
that "staticulese" into English:- The user can
conclude with 95% confidence that class "A" adequ-
‘ately maps class "B".

(v) The last criterion that I suggested was
that the reasure should be statistically rcbust.
I have not been able to show how sensitive the
significance of J is to violations in the assump~
tions or null hypothesis on which it is based.

In the above it was claimed that the hyperge-
cmetric model was adequate. Before proceeding I
would like to give consideration to the results in
Table 3, and convince the reader that what I claim
is true.

The mean value of J is the expected value
under the null hypothesis of spatially random cla-
ssification. Tt can be seen that the binomial
approximation follows the exact hvpergeometric
distribution while the simulation is a little more
variable, but it is not statistically significant-
ly different.

For the critical limits it can be seen that
the simulation and hypergeometric results are in
good agreement while the binomial approximation
tends to be conservatively biased.

In what has gone before I have neglected to
give consideration to two problems, viz. :-
i) Physical vs statistical significance.

Table 3 Shows that the 97%% statistical critical
value for the class "vegetation" is J = 25.8%.
Any analyst accepting so low an association would
not attract many users ! Traditionally applied
statiticians have used critical values of 5% to 1%.
However the remote sensing analyst does not want
just to show that an association is not random, he
in fact wants to show that it is highly associati-
ve. Thus I would suggest that very strict cut-off
levels be used, i.e. ¢-1%, $-¢¢1% etc. In this way
physical significance will be maintained.

ii) No overall statistic has been suggested.
If the user has embarked on a "level 1 classifi-
cation" with m target classes, how can he measure
his overall accuracy. Three possible suggestions
are, firstly consider the mean of the J's, second-
ly the mean of the significance of the J's or
thirdly require that each J shall be statisticalls
significant at the ¢-1% level of significance.

3

Following out of the above I would offer the
following recommendations :~

i) When presenting the results of a mapping/
classification project the analyst should give
some measure of his classification accuracy, with
respect to relevant surface data,

ii) Measure of accuracy should be site-specif:
ic and take both omissions and comissions into
account,

iii) When using a measure, of any sort, the
analyst should define exactly what quantities were
used to calculate that measure, and how the com—
putations were performed,

iv) The statistical significance of a measure
of association relative to the null hypothesis of
random association should be stated,

v) Minimm levels of statistical significance
should be ¢-:5% to ¢-¢1%,

vi) For the overall classification accuracy,
of m classes, some overall measure is required,

vii)} For the Jaccard co-efficient exact limits
ray be replaced by the binomial approximation pro-
vided the number of pixels np, np are fairly large,

viii) Same simple set of tables/figures are
required for the Jaccard co-efficient to obviate
reveated calculations and

ix) The statistical robustness of the Jaccard
co-efficient needs to be investigated.
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7. NOTATION

The symbols used in this paper are :-

J = The Jaccard co-efficient
m = Total number of different classes
M = ng = Number of pixels of class "B" in the
classified image
n = np = Number of pixels of class "A" in the sur-
face reference data
N = Total number of pixels
nop = Commissions
Ny, = Omissions
Napb = Negative matches
X=Ipp = Positive matches
X = A random variable

8. APPENDIX 1

PROPERTIES OF THE HYPERGEOMETRIC DISTIBUTION

The hypergeometric distribution given in equa-
tion (7) is more usually written as

px= x/m, w0 = RS /(3 (9)

for vax (¢, n-N+M) < x < MIN (n,M)
where

X = Dpp

n = ny and

M= nB

The binomial co-efficient is

N
M =5/ @nmy (16)
The properties of this probability mass function
are sumarised in Patel et.al. (1976 : 205-207).
The recursive property is
P (X=(x+1) /n,N,M)= ((n-x) (M-x)/
((x+1) (N-M-n+x+1))) -+ P(¥=x/n,N,M)} (11)
The binomial approximation may be invoked under
certain conditions.

put p = M/N (12)
to get
P (X=x/n,M,N) = B(X=x/n,p)

=(2) oo™ (13)
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Where B(X=x/n,p) denotes the binomial distribution,
The binomial approximations to the mean and
variance would be

E {x} = nM/N (14)
and
VAR{X}%2 nM (1-M/N) /N = nM(N-M) /N> (15)
9. APPENDIX 2

COMPUTATION OF THE CUMULATIVE PROBABILITES OF
OF THE HYPERGEOMETRIC DISTRIBUTION

The cunulative probability, Pr(X < A) can
be defined as

A
Pr(X<A) = & Pr(X=x)

=0

A

=z P(X=x/n,N,M (16)

x=¢ lM _(N—M) (N
write F¢ = P(X=¢/n,N,M) = ¢) n-¢) /\n

_ (N-M) ! (N-n) !n!
(N-M-n) ! N! (17

thus Pr(X <A) =Fo + F, + ***+ Fx (18)

use the recursive property of equation (11) to
write
Fi = (nM / (N=M-n+l) *Fo

and F, =((n-1) M1) / 2(N-M—n+2)) - F

and so on until
F =({n-x) (M-x) / (x+1) (N-M-ntx+1)) - Fx
X+1 (19)

In order that computational errors be minimized
it is recommended that the recursive co-efficient
be written as

n-x , M-x _n-x M-x
x+ 1 N-M—n+x+1 x+1 B + x (2¢)
where B = N-M-n+1 (21)

and compute the quotients first, before multiply-
ing.

Thus the cumulative probability can be eval-
uated provided F¢ can be computed from equation
(17) . To prevent machine overflow and/or under-
flow it is recommended that equation (17) be
computed as the product of the three quotients:—

N-M! ., _(N-n)! n!
(N-M-n) ! N! 1 (22)

F¢ =

The factorials may be evaluated directly or
read from a look-up table, provided that they
are less than 68 for a machine with a dynamic
range of

499

+ 1¢~

However n,M and N are often larger than this
SO recourse to an approximation is necessary.
Stirlings first order approximation for large x,
as (see Abramowitz and Stegan (1968 : 257)

In(x!) = % Ln(2m) + (x+5)In(x)
- X+ 6/12x (23)
with¢ < 8 <1

I will ignore the error term for large x. The
natural logarithm of the ratio of two factorials
will be

In (x!/y!) = In (x!) -In(y!)

KLn (x)+5Ln(x) - x - yLn(y) - %Ln(y)+y

= C (say) (24)
thus x!/y! = EXP (C) (25)
Applying this to equation (17) yields

F¢ =EXF ((N-M)Ln(N-M) + %Ln(N-M)-(N~M)
= (N=M-n)Ln (N-M~-n)-%In (N-M-n) + (N-M~n)
+ (N-n) Ln (N-n) +5Ln (N-n) - (N-n)
=N1n(N)-%Ln (N)+N
+ YXIn(27)+nln(n)+3In(n) -n)
=ExP ((N-MIn(N-M) + %Ln(N-M)
= (N-M—n)Ln (N-M-n) - %Ln (N-M-n)
+(N-n)Ln (N-n) + %Ln(N-n)
~NLn(N) - %Ln(N)
L, (n) + 3Ln(n) + 3Ln(2w) -1y (26)
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TABLE. 2 THE CONFUSION MATRIX
TABRLE. 1 A 'SINS' TABLE
Surface Reference Data Surface Reference Data
Automatic R
Classification Shadow Verge Grass Asphalt ta%ion Total
Class B Not B
Class 1 37 3 ¢ 4 6 5¢
. . n Class 2 7 82 1 9 8 1¢7
Classification Npp AL Class 3 5 13 o1 Z o 19
. R Class 4 3 2 4 236 34 279
Class A positive match | cammission Class 5 3 : - -t 7 o
Totals 5¢ 197 118 279 334 888
NaB Nab J
ission negative match Notes : i) 12 unclassified pixels are not shown
tor A s 9 ii) The automatic classification data were simulated
so that the totals of corresponding classes bal-
anced.
TARIE.3 A COMPARISON OF THE HYPERGEOMETRIC, BINOMIAL APPROXIMATION AND
SIMULATION OF THE JACCARD CO-EFFICIENT
SHADOW VERGE GRASS ASPHALT TATION
na, np 5¢ 147 118 279 334
J MEAN : Exact binomial $+$288  ¢-9636 ¢-¢794  ¢-1837 ¢$-228¢
approximation simulation ¢.$286  ¢-$632 ¢-¢7¢2 ¢-1834 ¢-2278
$-0398  ¢-0634 ¢-¢673  ¢-1879 ¢-2312
J MEDIAN : Exact binomial ¢-¢241  ¢-$594 ¢-¢631  ¢-1797 ¢-2257
approximation simulation ¢-$286  ¢-¢632 ¢-¢7¢2 $.1834 ¢.2278
$+$229  ¢-$613 ¢-4642  $-1869 ¢-23¢7
J S. D. Exact $-0L68 ¢ 0167 ¢-$167  6.¢161 ¢-¢158
simulation ¢-6197  ¢-¢171 ¢-¢l42  ¢-$p151 ¢-9159
2%% Critic. val : exact g $+$288 ¢-9351  $-15¢95 ¢-195¢
binominal approximation be0p63  $-0331 ¢.04¢7  ¢-1525 $-185¢
simulation o} $.$261 ¢-$p38p  ¢-1695 ¢-1961
97%% Critic. val : exact ¢.9526  ¢-¢918 ¢-¢977  ¢.213¢ ©.2580
binomial approximation 4902  $-1925 ¢-116¢p  $-229¢ ¢-4§9¢
simulation G-0667  $-0947 ¢-9952  ¢$-23¢8 ¢$-2576




