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I. ABSTRACT

Simulated ™ data were evaluated for
discriminating levels of various water
quality constituents. Temperature,
suspended solids, turbidity, conductivity,

pH, and depth were measured in situ
concurrent with a TMS overflight at
twenty~-five predesignated sample sites.

Highly significant regressions were
developed for conductivity, turbidity, and
suspended solids while statistical results
for pH, temperature, and depth were not
considered significant. For suspended
solids, an equation was developed using a
multiple regression with the seven TM
bands. Logarithm conductivity was used in
a multiple regression with TM bands
1,2,3,4, and 6. Principal components 1

through 4 were used in a multiple
regression developed for turbidity
mapping. Regression equations were
assessed for high coefficient of
determination (R*) and statistical
significance (F-ratio). To assess the
robustness of the regressions used for

mapping conductivity, turbidity, and
suspended solids in this study, confidence

intervals about the mean regression point
were calculated. Also, cross validation
was conducted by regressing random

subsamples of site and comparing the

resultant range of R“.

II. INTRODUCTION

The present research involves water
quality mapping with TM data and is part
of a larger effort to develop and test
analytical techniques for hazardous waste
disposal impact assessment. One of the

risks associated with hazardous waste
disposal is the potential for
contamination of nearby water bodies as a

consequence of inadequate containment of

toxic wastes. Hazardous substances
gaining access to a waterway may then be
easily transported and the health concerns
spread over a larger area. Therefore,
detection of changes in water quality
plays an important role in hazarous waste
management and the protection of public
health. The capability for assessing
water quality with remotely sensed data
may facilitate locating new pollutant
sources, detecting leaks from known sites,
assessing the extent of polluted water, or
monitoring industrial activity.

The ability to efficiently assess
water quality on a large scale and thereby
detect water pollution has been the aim of
many remote sensing studies. Remote
sensing of turbidity has been conducted by
Bartolucci et al. (1977, pp. 595-598),
Schertz et al. (1975, pp. 320-343), Rogers

et al. (1976, pp. 1-13), Khorram (1981,
pp. 667-676), and Weisblatt et al. (1973,
PpP. 3A-42 -3A-59). Suspended solids
investigations have been conducted by
Kiemas and Polis (1977, pp. 549-612),
Khorram (1981, 667-676), Johnson (1977,
pp. 25~31), and Holyer (1978, pp. 323-

338). Khorram (1982, pp. 15-22) and
Rogers et al (1976, pp. 1-13) have studied
the ability to discriminate salinity
levels using remotely sensed data.
Thermal discharges were examined by
Scarpace (1975, pp. 1223-1231) and Schott
(1979, pp. 753-761). A summary of these
investigations is given in Table 1.

The objective of this study was to
evaluate Landsat-4 Thematic Mapper (TM)
data for water quality mapping. Simulated
TM data (TMS) obtained on an ER-2 aircraft
was used due to the lack of T™M data over
the western U.S. It was anticipated that

TM's increased spatial, spectral, and/or
radiometric resolution with synoptic
coverage would facilitate 1large scale

water quality assessment.,
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III. DATA COLLECTION

A. Study Site Selection

The area selected for the study was
the Carquinez Strait, an estuary in the
northeastern extension of San Francisco
Bay, California. The location was chosen
because of the existence of numerous known
abandoned waste sites and high degree of
nearby industrial activity which were
considered potential sources of water
pollution. The historic location of
industrial facilities along the Carquinez
Strait, with the proximity to railroad
lines and deep water ports, resulted in a
high concentration of major industries and
consequent waste disposal sites within the
area. In addition to many existing waste
disposal sites, the California Department
of Health Services found approximately
twelve abandoned waste sites in the area
being used for the test site (Abandoned
Sites Project, 1981). The Carquinez
Strait area was also considered a good
choice for remote sensing of water quality
because, as a mixing zone where fresh and

saline water meet, there is a large range
in the levels of water quality
constituents,

B, Water Quality Data

Twenty-five ground truth
selected and plotted on navigational
charts prior to beginning the water
sampling., Logistical constraints of time,
equipment, and staffing required
confinement of the sampling activity to
Suisun Bay. The TMS overflight was timed
to coincide with slack tide so that
differences were minimized between the
spectral data and the water quality
conditions they represented. All
sampling occurred within one hour of the
ER-2 overflight. At each predesignated
sampling site, a bucket was dropped
overboard and filled with water from
within one foot of the surface, within the
light penetration zone. Sample bottles
were filled from the bucket and put on ice
to freeze for later laboratory analysis.

sites were

chosen for
These were

Six water variables were
assessment of water quality.

conductivity, pH, suspended solids,
turbidity, temperature, and depth. Within
Suisun Bay, sampling stations were chosen

to encompass a wide range of water quality
types. Approximately eighteen of the
sites were located along two transects to
measure overall water quality. The
remaining six were placed near known or
suspected sources of chemical or thermal
pollution.

Suspended Solids. Water quality
variables may affect the electromagnetic
energy measured by the scanner either

directly or indirectly. Solid particles
held in suspension in the water column
influence spectral reflectance directly as
a result of 1light backscattering. The
suspended solids measurement represents
all solid material held in suspension in
the water column. High concentrations of
suspended solids return a strong energy
signal to the spectral scanner (Moore,
1978, pp. 445-462). Suspended materials
may be phytoplankton, zooplankton, clay,
fine sand, silt, or other inorganic
particles, The amount of total suspended
solids was determined in the laboratory
and found to range from 13 to 88 mg/l.

Turbidity. Water turbidity is a
function of materials present in the water
and is augmented by stirring forces such
as wind or current. Turbidity and
suspended solids are closely related
although turbidity influences water
quality in a somewhat different manner.
Stirring action brings materials into the
water column which then reduces the
transmission of 1light through the water.
The reduced 1light transmission prevents
eutrophication while the aeration and
stirring promotes phytoplankton growth,
Turbidity is therefore directly and
indirectly detected by the scanner. Water

samples collected for this study were
measured in the laboratory and ranged from
16 to 65 nephelometer turbidity units
(NTUs) .

Temperature. Water temperature was
measured in the water collecting bucket at
each of the 25 sites. The low temperature
was 17.0 c, the high was 18.9 C.
Temperature is a variable that is directly
sensed by the scanner because the
temperature of the water represents its

thermal energy which can be sensed by a
scanner sensitive to thermal infrared
portions of the spectrum. T™ band 6

senses thermal energy in the 10.4 to 12.5
um region.

Conductivity.

Water conductivity is
not a variable that affects
electromagnetic energy, although it may
influence other parameters such as
suspended solids which may be spectrally
sensed. The salinity of the water is
represented by the conductivity
measurement. Fresh river water meets
saline ocean or bay water in the Carquinez
Strait estuary. When the conductive salt
water mixes with sediment-laden fresh
water from the delta, £flocculation of
sediment particles occurs and a suspended
solids gradient 1is apparent in the area
called the mixing =zone. Phytoplankton
distribution may also be salinity-related,
and chlorophyll does reflect light in the
visible and near infrared wavelengths.
For this study, conductivity was measured
in situ and ranged from 117 to 406
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micromhos/centimeter (umhos/cm).

pH. Water pH is another variable
that is not directly sensed by the scanner
but may have spectral expression through
other water constituents, such as
phytoplankton. pH can be an important
property of water quality in that it
drives oxidation-reduction of toxic heavy
metal compounds, taking them in or out of
solution and determining their dispersion.
This in turn may influence other factors,
such as suspended solids, which «can be
detected by the scanner. Laboratory
analysis of pH in the stored samples
showed that pH ranged between 7.2 and 8.1,
from neutral to slightly alkaline.

Depth. Although depth is not a water
quality property, depth sounder readings
were recorded at each sampling station to

enable later determination, if necessary,
of whether the bay £floor was being
detected by the scanner. Water most

easily transmits light in the blue and
green wavelengths and at shallow depths,
bottom reflection may be detected by the
spectral scanner if the water is not too
turbid. Whitlock et al. (1978, pp. 1405~
1410) investigated apparent remote sensing
penetration depth at 520 nm wavelength and
found that at suspended solids levels of
beween 10 and 100 ppm [mg/l], penetration
depth varied generally from about 0.4 to

1.8 m. Bartolucci et al. (1977, pp.
595-598) reported that at depths greater
than 30 cm, bottom reflectance in turbid
water (> 100 mg/1) did not influence
Landsat MSS spectral response. At one
sampling site in Suisun Bay, the water
depth was 6 feet (1.8 m), but all other

depths were 10 to 64 feet (3.0 - 19.5 m).

C. Thematic Mapper Simulator (TMS)

TMS data were acquired May 13, 1982
from 3:05 to 3:12 pm on ER-2 flight 82-
078. The TMS data were collected by the
Daedalus DEI-1260 multispectral scanner
configured to simulate the characteristics
of the TM sensor aboard Landsat-4. Ground
resolution was 28 meters at an altitude of
70,000 feet and the spectral channels were
identical to the Landsat TM channels. A
subsection of flightline C-D provided
almost entirely cloud-free coverage of the
study site. The overflight was flown east
to west to reduce sun glint reflection on
the water.

To determine the spectral values of
the water sites, the sites were located on
the aerial photographs by triangulation
and transferred to UsGSs maps.
Registration of a small window
encompassing the sampling locale was used
to develop a second-degree nearest
neighbor transformation. The
transformation equation was used to

convert the latitude-longitude coordinates
of the sampling sites to row—column
coordinates in the TMS scene. To
compensate for possible inaccuracies in
location of the sample sites, a nine pixel
(3 by 3) area was centered on the
calculated site locations and the mean
spectral reflectance of the nine pixels
was used in subsequent statistical
analyses. The variance of the spectral
radiances within the nine-pixel sites was
calculated to indicate how well the
spectral means represented the sample
site. For example, high spectral
variance might suggest that the site was
located on a gradient or at a boundary
between distinctive water quality levels.
For any particular poorly placed site, a
high variance would be expected in most of
the bands. Sites 3, 7, 8, and 19 were the
sites that had large variances in most
channels.

IV. DATA ANALYSIS

Multiple, stepwise, and polynomial
regressions were run for each of the water
parameters, using spectral values as the
independent variables and the water values
as dependent variables. Whitlock et al.
(1982, pp. 151-164) describes in detail
recommended criteria for conducting
regression analyses specifically for water
quality remote sensing studies. His
environmental criteria were followed as
much as possible over the sampling  area.
Specifically, changes in atmospheric
transmission over the scene were assumed
to be small because the water sampling
area was confined to a limited region. As
recommended, water depth was greater than
the scanner penetration depth where
samples were collected. Also, a near-
constant vertical water constituent
gradient within the remote sensing
penetration depth was assumed since the
turbidity of the water indicated vertical
mixing action.

The suggested ground truth conditions
were also complied with to the extent
possible. Therefore, a single remote
sensing scene was used and contained large
differences in radiance. Multiple
sampling points were located in suspected
thermal plumes and water masses. The
samples were collected at constant depths
and they were handled and analyzed in a
consistent manner. And finally, the total
number of sample points, twenty-five, was
greater than the number of TM bands used
as independent variables in the regression
equations,

Criteria Eor significant regressions
were high R“, high significance, and
evenly distributed residuals. By
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plots of residuals, the

higher or 1lower order

could be determined.
instead of an even
residuals, there was a
trend to increasing residuals with
increasing water quality, a square root
and/or log of the water variable was input
to the regression. Similarly, a polynomial
regression was applied to the data using a

examining the

suitability of a
dependent variable
For example, if
distribution of

third degree polynomial equation to
describe the relationship between the
water parameters and spectral values. F-

ratios were calculated for all regressions
to indicate significance of the regression
equation.

The noise within the spectral data
was not quantified because it was assumed
to be constant over the data set, but two
steps were taken in an effort to reduce
it. Noisy bands 5 and 7 were eliminated
from the set of independent variables and
the regressions were repeated. Also, a
principal components transformation of the
7 TM bands was conducted and the £first
four components input to the analysis as
independent variables. Land was masked
from water via thresholding of TM4 so that
spectral data for only the water would be
used in the principal components analysis.
Components one through four accounted for

97 percent of the scene variance. The
bands contributing most to principal
components transformation were 2, 4, 5,
and 6.

In many studies, volume reflectance
has been separated from surface
reflectance so that the actual water

column 1is being measured [(Holyer, (1978,
pp. 323-338), Schertz (1975, pp. 320-
343) 1. Assessment of volume reflectance

was not attempted in this study since no
clear or shadowed water bodies were
present in the scene to enable
calibration. This was not of major
concern in this study because the results
were not intended for application to
multiple data sets, and the surface
reflectance component was assumed to be
constant over the data set used.

V. RESULTS

The regression results were
interpreted according to the following
statistical criteria in order to select
the best ongs for generating water quality
maps. An R“ approaching 1.0 was desired
as it represents the percentage of
variance in the water quality constituent
that is explained by the spectral
information. A ratio of F to the tabled F
greater than or equal to 4.0 was
recommented by Whitlock et al. (1982, pp.
151-168) for indication of statistical

significance of the regression equation.
A significance level P approaching 0.0 was
optimal; any regression below the .05
level was not considered. The polynomial
regres%ions were rejected on the basis of
low R and F, and high P. The best
regression and best single band for each
water quality variable were determined and
are listed in Table 2.

The most significant regression
equations were applied to the TMS data and

SUSPENDED
SOLIDS

Figure 1. Suspended Solids gradient, mg/l.
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water quality maps were produced. The
resultant maps appeared noisy and levels
of the water quality constituents were not
spatially continuous. Therefore, a 3-by-3
averaging filter was passed over the raw

data and the regressions were reapplied.
The output maps showed much better
contouring of the water quality
constituents and much less noise.
Although the maps produced with non-
averaged data may have shown greater
detail, location of a single pixel of

certain water quality is not possible in a

moving body of water, nor was it the
intended use of such mapping. Water
quality maps were thus made for
conductivity, suspended solids, and
turbidity.

Using the seven TM channels in a
multiple regresiion with suspended solids

levels, a high R“ of .92 was achieved. No
transformation was necessary, although the
principal components, log and square root
of suspended solids also yielded good
results, The suspended solids map,
presented as a black and white gradient
map between 13 and 88 mg/l, is shown in

Figure 1 Land and suspended solids
values beyond the sampling range are
mapped to black background. The

regression equation that provided the map
iss

suspended solids = w=l 79051 w180 79 TM1 )
+ 100.41(TM2) - 2.32(TM3) = 2.94(TM4)
- 6.00 (TM5) +.508 (TM6) +.675(TM7)

The best single band foE mapping suspended
solids was TM3, with R® = ,7129. As can
be seen by referring to Table 1, Klemas
and Polis (1977, pp. 599-612), Khorram
(1981, pp. 667-676), and Holyer (1978, pp.

323-338) also utilized the red portion of
the spectrum (TM3) for suspended solids
mapping.

The second highest R2 of the water
quality constituents was BT for
conductivity. In this case, a multiple
regression between logarithm conductivity

and TM bands 1,2,3,4, and 6 was developed.
Khorram (1982, PP 15-22) wused the
equivalent MSS bands, excluding ™ 6, for
mapping salinity (see Table 1). In this
study, the logarithm of conductivity was
used to reduce the tendency for plotted
residuals to increase as conductivity
increased. To a lesser extent square root
conductivity also improged the residual
plot and increased the R® . The resultant
regression equation is:

log conductivity = 6.55 —.289 (TM1)
+.,100(TM2) -.027(TM3) +.019(TM4)
-.008 (TM6) .

COMDUCTIVITY

Figure 2. Conductivity gradient, umhos/cm.

Application of the equation to the
"averaged" TMS data set resulted in an
output image depicted in black and white

gradient in Figure 2. The best singli
band for conductivity was TM 4, at R
=.66.

Turbidity was also mapped using the
TMS data (see Figure 3). The first four

principal components (PCl,...,PC4) derived
from the TM bands yere used in a multiple
regression and an R =,75 was achieved.
The first four components accounted for 97
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percent of the data set variance. The TM
bands contributing the most information to
the principal components transformation
were bands 2,4,5, and 6. The Eingle ™
band Eound to yield the highest R®” was TM
4 . (R = ,70). Other investigators also
found the TM4 wavelength useful for
mapping turbidity (see Table 1), although
the TM3 wavelength was more commonly used.

turbidity= - 5.82 +.249 (PCl) +.155 (PC2)
-.200 (PC3) +.123 (PC4) .

The remaining water quality
constituents did not meet the regression
criteria for water quality mapping usid in
this project. Depth had a moderate R® and
F-ratio, but these parameters were
statistically insignificant for pH and
temperature. Therefore, water quality
maps were not produced for these
variables. A good correlation between
temperature and TM6 radiance was initially
anticipated since the TM6 wavelength is in
the thermal infrared portion of the
spectrum, however, this relationship was
not found. It is possible that
atmospheric moisture interfered with the
TM 6 radiance. A 1low range in data values
may also have been the reason for the poor
correlation; 88 percent of the sites were
between 17 and 18 degrees C. The minimum
thermal resolution of the scanner was .35
degrees C, so there may not have been a
wide enough range 1in temperature for
thermal mapping. The spectral data for
TM6 ranged between DNs 111 and 118,
similarly a small range. The moderate
results for depth, when none were
expected, may be explained by the presence
of some factor, such as suspended solids,
which is probably depth related.

Accuracy assessment of water quality
maps can be difficult to incorporate into
studies. It is necessary to conduct water
sampling as closely as possible to the
time that the spectral data 1is recorded
due to the highly dynamic nature of water
bodies. Therefore, the number of sites
sampled 1is often be limited by logistical
and economic resources. Moreover, all
samples must often be used for the
development of the best regression model
possible, leaving no sites remaining for
assessment of the results. Steps were
taken in this study to assess the
robustness of the regressions wused for
mapping conductivity, turbidity, and
suspended solids. Confidence intervals
about the mean regression were calculated,
and cross validation of random subsamples
was performed.

Confidence intervals were calculated
for each water quality variable to
indicate the actual range of predicted
water quality represented by the

TUREIDITY

Figure 3.

Turbidity gradient, NTUs
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regression equations. The equation used
for calculating the confidence interval at
the mean spectral values is:

=

Y’i“‘.ozs;zz)\F

where:
¥y = predicted water quality value from
the regression equation when mean
values are used for the TM values
t = t statistic for 95% confidence level

and 22 degrees of freedom

s = standard error of estimate for data
(residual standard deviation)

n = sample size

The confidence interval is smallest
when calculated at the mean spectral
values ; away from the mean its 1length
increases. Applying the equation to the
suspended solids regression, a range of
49.15 to 56.01 mg/l suspended solids was
derived. In other words, with 95 percent
confidence in future sampling, using the
same spectral values in the regression,
the predicted suspended solids would be
between 49.15 and 56.01 mg/l. So, in
using a water quality map, the mapped
water quality level could have been off by
as much as 3.43 mg/l, which may be
acceptable for many uses. Applying the

same technique to the conductivity
regression, a 95 percent confidence
interval for conductivity at the mean

spectral values was 2.14 to 2.20 umhos/cm.
The turbidity 95 percent confidence
interval was 29.19 - 35.89.

As a means of cross validating the
regressions, random subsamples_ of the data
were regressed and resultant R®s compared.
Five sites, selected randomly, were
eliminated from the sample data and the
regression run again using the same
regression parameters as used for the
final mapping. That 1is, for suspended
solids, all seven TM bands were used, for
conductivity, 1log conductivity was used
with ™ bands 1, 2, 3, 4, and 6. For
turbidity, principal components 1-4 were
used. This procedure was repeated ten
times for each water quality variable,
using different random subsamples. Ag can
be seen in Table 3, the range of R” for
suspended solids was, .88 to .97. For
conductivity, the R“s varied from .67 to
.84, and from .67 to .92 for turbidity.
When the new regressions were applied to
the TMS data, the series of water - quality
maps were mostly very similar, although in

some cases substantially different water
quality contours resulted. These
assessments indicate that sample size

limitations are an important factor in

water quality mapping.

VI. CONCLUSIONS

TM data proved to be useful for
mapping select water quality factors,
specifically, suspended solids, turbidity,
and conductivity. For suspended solids,
TM bands 1-7 were used in a multiple
regression wherein the coefficient of
determination and significance were the
highest and variability in cross
validation was the lowest of the water
quality wvariables. TM was also suitable
for mapping turbidity2 and conductivity
which were similar in R“ and significance,
although the confidence interval and range
of results for random subsamples was
largest for turbidity. TM bands 1-4, and 6
were used with log conductivity in a
multiple regression. Turbidity was mapped
using a multiple regression with the first
four principal components of the TM data.
In this study, water temperature was not
reliably sensed with TM6, probably because
the range of temperatures sampled was
small and there may have been atmospheric

moisture interference. The TM regression
technique was deemed suitable for water
quality mapping given known confidence
intervals and depending upon the
application in question.
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Table 1. Summary of Water Quality Remote Sensing Investigations

Water Investigators Scanner Bands T™
Constituent Equivalent
suspended Klemas & Polis (1977) Landsat MSS 5 ™ 3
solids Khorram (1981) ocs .494-.518 um ™ 1
.667-.679 um ™ 3
Johnson (1977) - .380-.440 um (<TM 1)
.700-.740 um ™ 4
Holyer (1978) - .652 um ™ 3
.782 ™ 4
conductivity  Khorram (1982) Landsat MSS 4,6,7 ™ 2,4
Rogers et al (1976) Landsat MSS 4/5 ratio ™ 2/3
turbidity Bartolucci et al (1977) Landsat MSS 5 ™ 3
Schertz et al (1975) Landsat MSs 4,5,6,7 ™ 2,3,4
Rogers et al (1976) Landsat MSS 5 ™ 3
Weisblatt et al (1973) Landsat MSS 5,6 ™ 3,4
Khorram (1981) ocs .494~.518 um ™ 1
.778-.790 um ™ 4
Table 2. Most Significant Regressions for Each Water Quality Parameter
Water R2 Bands Sites Regression F- D.F. Sig. Transformation
Constituent Used Removed Type Ratio P
conductivity .77 1-4,6 23 mult *12.032 5,18 <.001 1log cond
.66 4 23 step *¥20.07 2,21 <.001 -
depth .72 1-4,6 4,24 mult 8.730 5,17 <.001 1log depth
.38 6 4 step 13.34 1,22 <.005 1log depth
temperature .60 all none mult 3.605 7,17 <.025 1log temp
.33 PCA4 none step 11.47 1,23 <.005 pca
'PH .47 all none mult 2.130 7,17 ns** square root pH
.28 1 23 step 8.67 1,22 <.01 log pH
turbidity .75 all 19 mult *14.18 4,19 <.001 PCa
.70 4 19 step *¥20.94 1,22 <.001 square root turb
suspended .92 all 2 mult *27.513 7,16 <.001 -
solids .83 3,6 2 step *49.89 2,21 <.001 sguare root s.s.

* met Whitlock's criteria for F
**ns - not significant at the .05 level

Table 3. Cross Validation Regressions
Suspended Solids* Conductivity*¥* Turbidity***
1 .97 6 .90 1 .80 6 .69 1 .68 6 .67
2 .94 7 .93 2 .80 7 .83 2 .80 7 .73
3 .95 8 .94 3 .67 8 .72 3 .76 8 .80
4 .95 9 .88 4 .67 2 .84 4 .79 9 .79
5 .94 10 .93 5 .67 10 .83 5 .92 10 .81
* Range of F-ratios was 58.0 - 14.9 at <.001 level of significance
** Range of F-ratios was 13.7 - 5.2 at <.005 level of significance
* k%
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Range of F-ratios was 7.14 - 41.1 at <.005 level of significance
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