Reprinted from

Tenth International Symposium
Machine Processing of
Remotely Sensed Data
with special emphasis on

Thematic Mapper Data and

Geographic Information Systems

June 12 - 14,1984

Proceedings

Purdue University
The Laboratory for Applications of Remote Sensing
West Lafayette, Indiana 47907 USA

Copyright © 1984
by Purdue Research Foundation, West Lafayette, Indiana 47907. All Rights Reserved.
This paper is provided for personal educational use only,
under permission from Purdue Research Foundation.
Purdue Research Foundation

ANALYZING REMOTELY SENSED DATA ON THE
MASSIVELY PARALLEL PROCESSOR

J.C. TILTON

Science Applications Research
Riverdale, Maryland

J.P, STRONG II1I

National Aeronautics and Space
Administration/Goddard Space Flight Center
Greenbelt, Maryland

ABSTRACT

The new earth resources observation
satellites of the 1980°s will provide
imagery with much higher information
content than provided by the Landsat
Multispectral Scanners (MSSs) of the
1970°s. Concurrent with the increase of
information content in data from earth
resources observation satellites has been
an increase in (ground based) computer

processing capability. 0f particular
relevance to image processing and
classification is the development of

several 'large parallel processors, the
largest of which currently is . the
Massively Parallel Processor (MPP).
Large parallel processors such as the MPP
will foster the rethinking of
applications algorithms in parallel to

increase computational speeds several
orders of magnitude and allow the
development of algorithms which

previously have been avoided because of
their computationally intensive nature.
The development of 1image processing
software for the MPP is being greatly
facilitated by the earlier development of
Parallel Pascal, a high level 1language
for the MPP, which we discuss briefly.
We will discuss results from the recoding
for the MPP of several existing per pixel

image analysis schemes, including
ISODATA, the Maximum Likelihood
Classifier and the Fast Fourier
Transform. However, the most exciting

prospects for processing remotely sensed
data with the MPP is the development of

algorithms which exploit spatial
information through utili.ing
neighborhoods of pixels. In this vein,

we will describe the implementation on
the MPP of a Spatially Constrained
Clustering (Image Segmentation) scheme
and a Contextual Classifier.

L. LNTRODUCTION

The new earth resources observation
satellites of the 1980°s will provide
imagery with much higher information
content than provided by the Landsat
Multispectral Scanners (MSSs) of the
19707s. Concurrent with the increase of
information content in data from earth
resources observation satellites has been
an increase in (ground based) computer
processing capability. Of particular

relevance to image processing and
classification is the development of
several large parallel ©processors. The

largest such operational processor is the
Massively Parallel Processor (MPP), which
was built by Goodyear Aerospace for the
NASA Goddard Space Flight Center.
(Batcher, 1980 and Schaefer et al, 1982)
The MPP is a Single Instruction, Multiple
Data stream (SIMD) computer containing
16,384 bit serial microprocessors
logically connected in a 128-by-128 array
with each element having direct data
transfer interconnections with its four
nearest neighbors. With of this novel
architecture, the MPP 1is capable of
billions of operations per second. The
MPP is being used at NASA“s Goddard Space
Flight Center for developing applications
software for solving problems in image
analysis, synthetic aperture radar
processing, weather modeling and other
applications in which the parallel
architecture can result in greatly
increased computational speeds. (Burkley
and Mickelson, 1983)

The availability of the MPP and

other large parallel processors will
foster the rethinking of applications
algorithms in parallel to increase

computational speeds several orders of
magnitude and allow the development of
algorithms which previously have been
avoided because of their computationally
intensive nature. Development of
applications software for the MPP has

1984 Machine Processing of Remotely Sensed Data Symposium

281

followed closely the construction and
testing of the MPP Thardware. This
software development has been facilitated
greatly by the earlier development of
Parallel Pascal, a high level language
for the MPP (and potentially other SIMD
computers) which we discuss briefly
below.

The higher information content of
imagery provided by the newer earth
resources observation satellites implies
substantially more massive data volumes

that could easily overwhelm analysis
algorithms currently implemented on
serial computers. The throughput of
these current operational image

processing and classification algorithms
can be greatly increased by rethinking
them in parallel and implementing them on

the MPP. We will discuss results from
the recoding for the MPP of several
existing per pixel image analysis

schemes, including ISODATA, the Maximum
Likelihood Classifier and the Fourier
Transform, and compare the serial and
parallel versions in terms of computation
speed.

The most exciting prospects for
processing remotely sensed data with the
MPP is the development of algorithms
which exploit spatial information by
utilizing neighborhoods of pixels. The
new generation of earth resources
observation satellites will produce
imagery with much higher spatial
information content, as well as higher
spectral and radiometric information
content. The MPP will be a key research
tool in developing analysis algorithms
that, in particular, effectively extract
spatial information from earth resources
imagery.

Present operational image processing
and classification algorithms for remote
sensing (earth resources) applications
primarily use spectral information and
generally make little use of spatial
information (an exception is ECHO (Kettig
and Landgrebe, 1976)). These algorithms
may have been adequate for relatively low
resolution Landsat MSS imagery, but they
are not adequate for the higher
resolution data provided by the Landsat
Thematic Mapper (™). Using these

current serial techniques, several
studies have shown that the 30-meter
resolution of the TM data tends to
confuse these per pixel algorithms,

producing poorer «classification results
with ™ data than with 80-meter
resolution MSS$ data. (Markham and
Townshend, 1981, Williams et al, 1983,
and Alexander et al, 1983) Researchers
theorize that TM data would produce much

better classification results if tne
classification algorithms used would
exploit spatial information as
effectively as current techniques exploit
spectral information.

In the past it has proved difficult
to implement algorithms exploiting
spatial information because of the
constraints imposed by the available
serial computers. Fortunately, parallel
computers such as the MPP are well suited
for algorithms that exploit spatial
information through utilizing
neighborhoods of pixels. In this vein,
we will describe the implementation on
the MPP of a Spatially Constrained
Clustering (Image Segmentation) scheme
and a Contextual Classifier. As we will

see, when implemented serially these
algorithms are impractical (in terms of
processing times) for all but the
smallest image sizes, but when
implemented in parallel (e.g. on the

MPP) they become practical for common
image sizes.

II. PARALLEL PASCAL

In order to fully exploit the
capabilities of the MPP and make it a
useful tool to mnot only the image
processing researcher, but also the
remote sensing applications scientist, a
high priority was given to the
development of a high level 1language to
be used on the MPP. The first high level
language developed, known as Parallel
Pascal, is an extended version of the
popular Pascal programming language.
Developed by Reeves and Bruner* at Purdue
University, Parallel Pascal was designed
to be easy to use, portable, efficient,
and was designed to provide good error
detection. (Reeves and Bruner, 1980)
The ©parallel extensions are a small
number of carefully chosen features with
an eye toward making Parallel Pascal
portable even among the wide variety of
parallel architectures. These extensions
to Pascal are few and straightforward to
allow the declaraton of parallel array, a
few parallel manipulation and indexing

functions and extended control
structures.
Parallel arrays are explicitly

declared in Parallel Pascal by affixing
the word PARALLEL to the standard Pascal
array declaration, viz.:

* A, P. Reeves is now with the School
of Electrical Engineering, Cornell
University, and J. D. Bruner is now
with the Lawrence Livermore Laboratory.

1984 Machine Processing of Remotely Sensed Data Symposium

282

name: PARALLEL ARRAY[index range] OF type

This explicit declaration

of
arrays provides the programmer

parallel
direct

control over which arrays are operated on
in parallel. The last two dimensions of
parallel arrays are restricted

Parallel Pascal to 128-by-128

in

(or the

last dimension to 16,384) to conform with

the architecture of the MPP.

Operationally, parallel

arrays

are

different from standard Pascal arrays in

that parallel arrays can be added,
divided, compared, etc. as aggregate
units rather than element-by-element.
Special indexing mechanisms are provided
to selectively operate on particular
portions of a parallel array. Standard
elemental functions, listed in Table 1,

perform the same operation on each
element of a parallel array,
independently and in parallel. Special
transformational functions, listed in

Table 2, perform transformations upon the
entire parallel array.

" Table l: Elemental Functions (from (Reeves and Bruner, 1982))

| syntax

meaning |

trunc(x)
round(x)

type conversions

truncate real to integer
round real to integer

arctan(x)

arctangent function

ord(x) ordinal value of x (for scalar types)

chr(x) character with ordinal value x
] arithmetic_functions |
] abs(x) absolute value |
i sqr(x) square |
| exp(x) exponential |
| 1n(x) natural logarithm]
| sin(x) sine function |
| cos(x) cosine function |
| |

miscellaneous

| |

| odd(x) boolean: true if x is odd |

| eof(f) boolean: true if at end-of-file on file f |

| eoln(f) boolean: true if at end-of-line on file £ |

| succ(x) successor of x (if defined) : |

i pred(x) predecessor of x (if defined) |

Table 2: Transformational Functions (from (Reeves and Brumer, 1982))

| |
| syntax meaning |

shift(array,Dl1,D2,...,Dn)
rotate(array,D1,D2,...,5n)
expand(array,dim,size)
transpose(array,D1,D2)

prod(array,D1,D2,.
all(array,D1,D2,..
any(array,D1,D2,..
max(array,D1,D2,..
min(array,D1,D2,..

|
|
]
|
| sum(array,Dl,D2,...,Dn)
[
]
|
i
|

.,Dn)
,Dn)
,Dn)
,Dn)
,Dn)

end-off

circularly rotate data within A
expand array along specified dimension
transpose 2 dimensions of A

reduce¥*
reduce¥®
reduce¥®
reduce®
reduce®
reduce¥®

shift data within A

array with arithmetic sum
array with arithmetic product
array with boolean AND

array with boolean OR

array with arithmetic maximum
array with arithmetic minimum

* Do the indicated operation over all specified dimensions of the array
reducing the dimensionality by the specified number of dimensions. E.g.,
for two-dimensional array, "A",
of array, resulting in a scalar value.

sum(A,1

,2) takes sum over both dimensions

1984 Machine Processing of Remotely Sensed Data Symposium

283

III. 1ISODATA

The development of the MPP was
driven by the need for ultra high speed
image processing of data form satellite
sensors. One of the first image
processing algorithms to be <coded for
running on the MPP, the ISODATA algorithm
was chosen as a benchmark of the MPP's
processing power. (Slotnik, 1977-1980)
The MPP implementation of ISODATA works
in the following way:

1. Given a set of <class mean values,
determine the N-dimensional Euclidean
distance between the class mean and
all pixels in the image.

2. Assign image pixels to the class with
the shortest distance.

3. Re-compute class means based on the
arithmetic means of pixels in the
class.

4., Repeat steps 2 through 4 wuntil the
class means stabilize.

This early MPP version of ISODATA is
a simple implementation, there 1is no
combining of <close <clusters and no
cluster splitting. Furthermore, there is
no point weighting with MPP ISODATA. (A
later MPP version of ISODATA is complete,
including point weighting and cluster
combining and splitting.)

Speed and efficient use of the MPP
architecture were primary concerns,
therefore the ISODATA algorithm was coded
in Main Control Language (MCL) embedded
within the structure of a "C" program.
(Reeves and Bruner, 1980) As a result a
512-by-512 image, with four bands, 8 bit
pixels with 16 classes required 20
seconds on the MPP. A comparable time on
a VAX-11/780 is 7 hours.

IVv. MAXIMUM LIKELIHOOD CLASSIFIER

The conventional maximum likelihood

classifier is a spectral per point
classifier. The algorithm <classifies a
multi-band input image into spectral

classes according to spectral class
statistics constructed from training site
data, using a maximum likelihood decision
rule. When each class is assumed to have
equal prior probability, a pixel X is
classified into the class i if:

gi(X)>=gj(X) for all j=i

284

where gi(X), the discriminant function
for class i, is given as:

gi(X) = 1n(pi) - (X-Mi)T#*ci*(x-Mi)

where
Ci = Covariance matrix for class 1
Di = Determinant of covariance
matrix for class i
Mi = Mean vector for class i

In the parallel implementation of
this algorithm, written in Parallel
Pascal, all 1image pixels within a
128-by-128 array are classified
simultaneously. The final implementation
of the maximum likelihood classifier is
not yet complete, so computation time can
only be estimates. Ramapriyan and Strong
estimate that the MPP can <classify a
512-by~-512 4 band image in 0.5 seconds, a
full (Landsat) Multispectrial Scanner
(MSS) scene in 0.27 minutes, and a full
(Landsat) Thematic Mapper scene in 2.5
minutes. Similar processing times
utilizing a Floating Point Sytems AP180V
array processor are 107 seconds for a
512-by-512 4 band image, 72 minutes for a
full MSS scene, and 734 minutes for a
full TM scene. (Ramapriyan and Strong,
1983)

V. 2-D FAST FOURIER TRANSFORM

A 2-D Fast Fourier Transform (FFT)
using 10-bit integer data was implemented
earlier. (Slotmik, 1977-1980, Slotnik,
1981) This version can compute
transforms on images of size 2 ~by-2
where 1<n<7. We are currently designing
an efficient 2-D FFT implementation which
can use 32-bit real (64-bit complex) data
and which will work for image sizes
larger than n=7 (larger than 128-by-128).
The final details of this implementation

were still being worked out at the
writing of this paper, but hopefully more
complete description of the MPP
implementation of this algorithm will be
available for discussion at the

symposium.

The Fourier transform wuses spatial

information in the sense that the
transform result can be interpreted as
"spatial frequencies." In the following

sections we discuss the implementation on
the MPP of algorithms which exploit
spatial information through utilizing
neighborhoods of pixels. The first
spatially oriented algorithm we discuss
is spatially constrained clustering.

1984 Machine Processing of Remotely Sensed Data Symposium

VI. SPATIALLY CONSTRAINED CLUSTERING

ISOCLAS and most other clustering
algorithms completely ignore the spatial
location of each pixel in an image or
transformed image* in the <clustering
process. In contrast, the relative
spatial location of image ©pixels 1is
directly used to constrain the clustering
process in our spatially constrained
clustering (SCC) algorithm. This use of
image pixels” relative locations is
supported in Schacter et al”s study of
image segmentation through clustering of
local feature values. (Schacter et al,
1979) After examining several approaches
to clustering images and transformed
images, they were dissatisfied with their
results and suggested that "if we want to
obtain better segmentation performance,
we must make use not only of similarities
among the image points, but also of their
relative positions." . They suggest doing
a preliminary segmentation based on
feature space clusters and then taking
"the points belonging to the clusters as
‘core points” of image regions and
...lcompleting] the segmentation of the

image by a region growing process
starting from these points."
Schachter et al and other

researchers (e.g. (Fu and Mui, 1981))
point out that region growing approaches
have had the disadvantage that the
regions produced depend on the order in
which portions of the image are
processed. But Schachter et al suggest
that implementing region growing as "an
iterative parallel process" would
overcome the order dependent problem.
The core of our SCC algorithm consists of
alternate iterations of parallel region
growing and parallel region switching.

Prior to region growing and region
switching, the SCC algorithm is
initialized with some initial
segmentation of the data. One possible
initial segmentation could be based on
feature space clustering, as suggested by
Schachter et al above. Another very
simple initialization is a segmentation
of the image into n-by~n regions, where
n>=2., Whatever the source of the initial
segmentation, the initial segmentation is

* Some clustering approaches Lirst
transform an image by calculating such
features as a gradient magnitude,
Laplacian, standard deviation or a
texture transform before performing
clustering. While these transforms may
incorporate spatial information over a
local window, the <clustering process
itself completely ignores the spatial
location of the transformed pixels.

represented in terms of n-by-n subregions
of pixels from the original data. An
m-by-m array of subregions (each sized
n-by-n) is formed from the n*m-by-n*m
data set. If we are so fortunate to have
m=128, we <can then 1load the initial
region feature values directly into the

MPP’s 128-by-128 array of
microprocessors, one region per
microprocessor. If m != 128 we must do
some bookkeeping, and/or <cluster the

image in n*m-by=m*m sections and piece
together the results after all the data
is processed. The feature values we use
are mean, standard deviation and degrees
of freedom. In addition, a regiom 1label
is given to each initial region.

We now have 1initial region mean,
standard deviation, degree of freedom and
label values loaded into the 128-by-128
MPP microprocessor array. Next, all
neighboring subregions are compared in
terms of a predefined similarity
criterion. For each mneighbor ("east,"
"southeast," etc.), the similarity
criterion is calculated in parallel, and
the result is stored in another parallel
array: testval. The similarity
criterion we use 1is the geometric mean
(or, equivalently, the product) of the
probabilities of random occurrence of the
t- and F-statistics calculated from a
modified Student’s t-test and modified
F-ratio test, respectively. (Tilton and
Cox, 1983, p.132)

Some of the microprocessors at the
edge of the image will contained invalid
values for testval. The value of testval
is set to zero for these microprocessors.
The value of testval is also set to =zero
for neighboring subregions that are
already in the same region. As we are
cycling through the "east," "southeast,”
"south," and “southwest" neighbors, we
record the best comparison value
encountered so far and the corresponding
merge direction in the parallel arrays
bestval and bestmdir, respectively. (We
don‘t have to look "west," "northwest,"
"north," or "northeast" because these
directions would be redundant.) The best
merge for the entire image section of the
image <contained in the MPP array is then
found by mnoting the pair of regions
associated with the overall best
comparison value in the ©bestval array.
This globally best pair of regions is now
merged to <complete one iteration of
region growing.

After a preset number of region
growing iterations, region growing is
invoked. In region growing all original
n-by-n subregions are compared to the
region to which they currently belong and

1984 Machine Processing of Remotely Sensed Data Symposium

285

to any neighboring regions (subregions
internal to a region have no neighboring
region, and thus cannot participate in
region switching). The comparison with
the <current region 1is done with the
subregion temporarily removed from the
region. The region switching criterion
is the difference between the subregion
comparison with the neighboring region
and the subregion comparison with the
current Tregion. The subregion with the
largest region switching criterion value
is then switched from its current region
to the indicated neighboring region. The
region switching criterion is
recalculated for all subregions, and the
region switching process is repeated
iteratively until no more region switches
occur.

Region switching is necessary
because as a region grows, its feature
values may gradually become very
different from its original feature

values. When this occurs, the region
feature values may become sufficiently
different from the feature values of
certain subregioms making up the region
that these subregions may become more
similar to some adjacent region. The
region switching process switches these
subregions over to the appropriate
neighboring region.

Once the region switching ©process
completes, another iteration of region
growing is performed followed by another
group of region switching iterations.
These alternating iterations of region
growing and region switching are repeated
over and over again wuntil no pair of
neighboring regions a similar enough to
be merged, according to a preset
threshold on the comparison test value,
or until a specified number of iterations
are completed.

We currently have the region growing
and region switching portions of the SCC
algorithm implemented in Parallel ©Pascal
and are currently at work implementing
the region splitting process (it is be
similar to the region switching process).
We plan to embed the basic SCC algorithm
in a coarse-to-fine resolution schema to
produced a Multiresolution SCC algorithm.
(Tilton, 1984)

The SCC algorithm wuses the full
power of the MPP in the portions of the
algorithm that calculate comparison tests
between neighboring regions. The actual
merging of a pair of regions, or the
switching of region assignment is
substantially a serial operation,
however. Nevertheless, the SCC algorithm
run significantly faster on the MPP than

on any serial processor. (Firm estimates
of comparable execution times were not
available at this writing.)

VII. CONTEXTUAL CLASSIFIER

In the contextual approach to
classification, the probable classifi-
cations of neighboring pixels influence
the classification of each pixel.
Classification accuracies can be improved
through this approach since certain
ground-cover classes mnaturally tend to
occur more frequently in some contexts
than in others.

We are investigating a contextual
classification algorithm which was
formulated by Swain et al and further
developed by Tilton et al. (Swain et al,
1981, Tilton et al, 1982) Here compound
decision theory 1is invoked to develop a
classification method which exploits
spectral/spatial information. A serial
implementation of the Swain-Vardeman-
Tilton (SVT) contextual classifier takes
an impractical amount of computer time
even for moderately sized imagery (over
64-by-64 pixels). In this section we
describe an implementation on the
Massively Parallel Processor (MPP), which
makes it possible to process reasonably
sized images (e. g. 1024-by-1024) in a
reasonable amount of time.

The decision rule for the SVT
contextual classifier was derived in
(Swain et al, 1981). We will not repeat
that derivation here. We just present
the decision rule itself. Let p-1 equal
the number of neighbors to be used as
context and let Xij = (X1,X2,...,Xp)T be
a vector of observations from the
"context array." (Xp=Xij, the pixel being
classified.) Let CP = (Cl,C2,...,Cp)Tbe
a vector of possible classifications for
the elements of the p-context array.
(Cp=Cij, a possible classification of the
pixel being classifier.) The decision
rule, which defines the set of
discriminant functions for the
classification problem, is then

"

s _ -

d(Xij) = action (classification) “a

which maximizes

P
G(cP) TT £(Xklick) (1)
all cP k=1
Cp="a”
where G(CP), the "context function," is

the relative frequency with which (P
occurs in the scene being analyzed, and
f(XklICk) 1is the set of class-conditional

1984 Machine Processing of Remotely Sensed Data Symposium

286

probabilities developed from training.
This training is similar to the training
required for a per pixel maximum-
likelihood classifier.

Methods for estimating the context
function G(CP) were discussed in (Tilton
et al, 1982). The most flexible and
successful of the methods discussed is

the "unbiased estimator." This estimator
requires as its only inputs the data
being classified and the set of

class~conditional probability functions
being wused to model the ground-cover
classes.

The wunbiased estimator is best
implemented ~as an adaptive estimator of
the context function. (Tilton et al,
1982) The local context function
estimate for a particular nl*n2 block of
image data (nl<<128 and n2<<128) is made
from a ml*m2 block centered on the =nl*n2
block(nl<=ml and n2<=m2). The central

nl*n2 ©block of image data is then
classified wusing this local estimate of
the context function. This ©process 1is

repeated until the entire data set is
classified. Better results are generally
obtained when ml>nl and m2>n2 (e. g. ml
= nl+10 and m2 = n2+10). This is because
when ml=nl and m2=n2, the context
function estimate is not accurate for the
pixels at the edges of the image data
block being classified.

The context function is estimated in
parallel for each ms*ms section and the
classification is done for each ns*ns
section. The <classification result for
the (128-ms+ns)-by-(128-ms+ns) section of
image data is then read out, and the next
block of data is processed. This
implementation gives an ideal
(128-ms+ns)*(128-ms+ns) times speed-up in
execution time. For ns=16 and ms=32, the
ideal speed-up would be by a factor of
12,544, We expect that the actual
speed-up will be by a factor of about
500. We estimate that the MPP can
perform a contextual classification of a
512-by-512 4 band image in 18 seconds, a
full (Landsat) Multispectral Scanner
(MSS) scene in 9 minutes, and a full
(Landsat) Thematic Mapper (TM) scene in
40 minutes. Corresponding processing
times on a floating point systems AP180V
array processor are 7625 seconds for a
512-by-512 4 band image, 5000 minutes for
a full MSS scene, and 20000 minutes for a
full TM scene. (Ramapriyan and Strong,
1983)

VII. CLOSING REMARKS

The economies in image processing
speed to be realized by large parallel
processors like the Massively Parallel
Processor (MPP) will prevent the
increasingly large data volumes of earth
resources imagery data from overwhelming
our computer analysis capability.
Moreover, computationally intensive
algorithms which are difficult to
implement on serial machines can be more
easily implemented in Parallel Pascal on
the MPP and run in "reasonable" times.
Perhaps the most significant result of
this work is that it is now practical to
design image analysis approaches using a
parallel perspective; a perspective that
is probably much akin to the way human
beings naturally processes imagery with
the eye-brain image processing system.
Such parallelism may make it possible for
a computer to come much closer to being
able to match a human being’s image
analysis capabilities. Whatever the case
may be with the human analogies, we hope
that this new tool, the MPP, will
stimulate new thinking about approaches
to analyzing image data.

IX. REFERENCES

Alexander, D., et. al., "Spectral,
Spatial and Radiometric Factors in Cover
Type Discrimination," Proceedings of the
1983 International_Geoscience_and_ Remote

Sensing Symposium, San Francisco, CA
(1983).
Batcher, K.E., "Design of a Massively

" IEEE Transactions_on

836-840

Parallel Processor,
Computers, Vol. c~29, PP-
(1980).

Burkley, J.T., C.T. Mickelson, "MPP: A
Case Study of a Highly Parallel System,"
Proceedings_of the AIAA_ Conference o¢on
Computers in Aerospace _#4, (1983).

Kettig, R.L. and D.A. Landgrebe,
"Classification of Multispectral Image
Data by Extraction and Classificatiomn of
Homogenecus Objects," IEEE Transactions
on_Geoscience_ Electronics, Vol. GE-10,
No. 1, pp. 19-26 (1976).

Markham, B.L. and J.R.G. Townshend,
"Land Cover Classification Accuracy as a
Function of Sensor Spatial Resolution,”
Proceedings_ _of the Fifteenth Interna-
tional _Symposium__on_Remote_ _Sensing of
Environment, Ann Arbor, MI (1981).

1984 Machine Processing of Remotely Sensed Data Symposium

287

Ramapriyan, H.K., and J.P. Strong,
"Applications of Array Processors in the
Analysis of Remote Sensing Images,"
Proceedings of the 17th Interpational
Symposium on Remote Sensing of

Tilton, J.C., "Multiresolution Spatially
Constrained Clustering of Remotely Sensed
Data on the Massively Parallel
Processor," Proceedings of _the _Tenth
International Symposium on Machine

Environment, Ann Arbor, MI (1983).

Reeves, A.P., and J.D. Bruner, "High
Level Language Specification and
Efficient Function Implementation for the
Massively Parallel Processor," Interim
Report TR~EE_80-32, School of Electrical
Engineering, Purdue University, West
Lafayette, IN (1980).

Reeves, A.P., and J.D. Bruner, "The
Language Parallel Pascal and Other
Aspects of the Massively Parallel
Processor," ©Final Report for NASA Grant

5-3, School of Electrical Engineering,
Cornell University, Ithaca, NY (1982).

Schaefer, D.H., J.R. Fischer, K.R.
Wallgren, "The Massively Parallel
Processor," ATAA Journal of Guidance,
Control, and Dynamics, Vol. 5, No. 3,
Pp. 313-315 (1982).

Slotnik, D.L., "Research in the
Application and Design Refinement of the
Massively Parallel Processing Computer
(MPP)," Quarterly Progress_ _Reports for
the period between September 1977 and
August 1980, NASA Contract NAS5-24275,

University of Illinois at Urbana-
Champaign, Urbana, IL (1978).
Slotnik, D.L., "Research in the

Application and Design Refinement of the
Massively ©Parallel Processing Computer
(MPP)," Second Quarterly Progress Report,
NASA Contract NAS5-26405, University of
Illinois at Urbana-Champaign, Urbana, IL
(1981).

Swain, P.H., 8. B. Vardeman, and J. C.

Tilton, "Contextual Classification of
Multispectal Image Data," Pattern
Recognition, Vol. 13, No. 6, pp.
429-441 (1981).

Tilton, J.C., and s.C. Cox,
"Segmentation of Remotely Sensed Data
Using Parallel Region Growing,"
Proceedings _of _the Ninth International
Symposium__on Machine Processing of

Remotely Sensed Data, West Lafayette, IN
(1983).

Tilton, J.C., S.B. Vardeman, and P.H.

Swain, "Estimation of Context for
Statistical Classification of
Multispectral Image Data," IEEE
Transactjons on__Geoscience_ _and_ _Remote
Sensing, Vol. GE-~20, No. 4, pp.

445-452 (1982).

Processing of Remotely Sensed Data, West
Lafayette, IN (1984).

Williams, D.L., et. ‘al., "Impact of
Thematic Mapper Sensor Characteristics on
Classification Accuracy," Proceedings of
the 1983 International Geoscience and
Remote Sensing Symposium, San Francisco,
CA (1983).

James C. Tilton is a Senior
Scientist with Science Applications
Research (SAR), Riverdale, MD. He
received a B.A. in Electrical

Engineering, Environmental Science and
Engineering and Anthropology from Rice
University in 1976; M.S.E.E. from Rice
University also in 1976; a M.S. in
Optical Sciences from the University of
Arizona in 1978 and a Ph.D. in
Electrical Engineering from Purdue
University in 198l1. Since 1982 Dr.
Tilton has been conducting and directing
research in remote sensing data analysis
techniques as a contractor at the NASA

Goddard Space Flight Center. His
research interests involve the
development of optimal techniques for
analyzing remotely sensed data. In

particular this includes 1investigating
techniques for incorporating spatial
information into the analysis process and
applying artificial intelligence
techniques to the understanding of
remotely sensed imagery.

James P, Strong is with the
Interpretive Techniques Section of the
Information Extraction Division of the
NASA Goddard Space Flight Center,
Greenbelt, MD. He received his B.S. in
Electrical Engineering in 1958, his M.S.

in Electrical Engineering in 1960, and his
Ph.D. in Electrical Engineering in 1971,
all from the University of Maryland. Dr,.
Strong was a member of the team overseeing
the construction of the Massively Parallel
Processor, and is presently involved in
developing algorithm that will enable the
Massively Parallel Processor to process
geoscience data, perform radar signal pro-
cessing, and to analyse and process images

acquired from space.

1984 Machine Processing of Remotely Sensed Data Symposium

288

